首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   145篇
  国内免费   75篇
电工技术   29篇
综合类   42篇
化学工业   3篇
金属工艺   1篇
机械仪表   19篇
建筑科学   1篇
矿业工程   1篇
能源动力   2篇
石油天然气   6篇
武器工业   3篇
无线电   125篇
一般工业技术   42篇
自动化技术   285篇
  2025年   2篇
  2024年   11篇
  2023年   25篇
  2022年   26篇
  2021年   19篇
  2020年   40篇
  2019年   34篇
  2018年   39篇
  2017年   46篇
  2016年   51篇
  2015年   39篇
  2014年   51篇
  2013年   31篇
  2012年   52篇
  2011年   32篇
  2010年   16篇
  2009年   9篇
  2008年   8篇
  2007年   7篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
501.
集成项目类别与语境信息的协同过滤推荐算法   总被引:2,自引:0,他引:2  
为改进基于项目的协同过滤推荐算法的推荐效果,在项目相似性计算时引入项目类别因素的影响,得出新的推荐算法,即基于项目类别的修正条件概率相似性,并在此基础上提出集成语境信息的多维推荐模型.通过与相关相似性、余弦相似性和修正余弦相似性的数值实验对比,证明在数据比较稀疏的情况下,改进算法所获得的推荐效果有较大提高.  相似文献   
502.
王友华  张建秋 《电子学报》2016,44(4):780-787
本文针对联合稀疏信号恢复问题,提出了一种贪婪增强贝叶斯算法.算法首先利用联合稀疏的特点对信号进行建模,然后在贝叶斯框架下,提出一种贪婪推理方式对信号恢复问题进行迭代求解.在迭代过程中,提出算法利用贝叶斯估计的方差信息来增强支撑恢复的结果,极大地提高了算法对信号恢复性能.理论分析表明:提出算法与同步正交匹配追踪算法具有相同的计算复杂度,远低于其他联合稀疏信号恢复算法.提出方法在具有高恢复精度和较低计算复杂度的同时,兼具贝叶斯方法和贪婪算法的优点.数值仿真验证了理论分析的有效性.  相似文献   
503.
压缩感知信号盲稀疏度重构算法   总被引:3,自引:2,他引:3       下载免费PDF全文
研究压缩感知信号重构算法,提出了一种不需要精确知道信号稀疏度的先验知识,就能重构出目标信号的盲稀疏度迭代贪婪跟踪重构新算法.采用分段的方法来逐段估计、扩充目标信号的真实支撑域,并应用后向追踪思想,自适应地调整候选序列,以便每一次迭代时更加精确地估计真正的支撑域.理论分析与实验证明,算法性能超过了现有的迭代贪婪跟踪重构算...  相似文献   
504.
基于压缩感知的正六边形CFA模式彩色图像去马赛克方法   总被引:2,自引:1,他引:2  
针对基于四边形排列的去马赛克(Demosaicking)的 传统方法存在拉链现象和虚假色等问题,本文尝试将更加符合人眼视觉特性的六边形采 样方式应用于彩色图像成像 系统,并从图像稀疏特性角度出发,提出基于压缩感知(Compressive sensing,CS)框架的 彩色图像去马赛克方法。本文方法 充分挖掘了彩色分量间和分量内的稀疏特性,可使复原图像的纹理细节与色彩更加逼真,有 效地避免了拉链现象和虚假色现象。实验结果验证了本文方法的有效性。  相似文献   
505.
针对应用迭代软阈值(IST)算法对基于低秩稀疏矩 阵(L+S,low rank and sparse)分解模型的动态磁共振成像(MRI)图像 进行重建存在重建精度一般和重建速度慢的问题,提出在矩阵L+S分解模 型的基础上引入全变分(TV)正则项,达到进一步去噪声和去伪影,提高重建精度目的;利用 非精确增广拉 格朗日算法(IALM)达到快速重建的目的。通过对心脏灌注动态MRI成像和心电影MRI成 像的仿真实 验表明:对于L+S低秩稀疏矩阵分解模型的重建,IALM比IS T算法速度更快,精度更高;模型引入TV正则项 后再利用IALM重建,重建速度虽然比之前的IALM有所降低,但依然优于IST算法, 并且重建精 度高于之前的IALM。在L+S分解模型中引入TV正则项 提高了MRI重建精度,运用IALM进行求解加快了重建速度,结合TV正则项和IALM达到了 快速、高精度重建的目的。  相似文献   
506.
提出一种基于最大化密度差的L2核分类器算法MDL2KC.该算法不仅可以保证估计出的两类密度差接近于真实密度差,而且可以使两类的密度差尽可能大.利用人工数据集和标准UCI数据集进行实验验证,所得结果表明,MDL2KC算法较传统的L2核分类器算法具有更好的分类效果和稀疏特性.  相似文献   
507.
         下载免费PDF全文
The compressed sensing (CS) theory makes sample rate relate to signal structure and content. CS samples and compresses the signal with far below Nyquist sampling frequency simultaneously. However, CS only considers the intra-signal correlations, without taking the correlations of the multi-signals into account. Distributed compressed sensing (DCS) is an extension of CS that takes advantage of both the inter- and intra-signal correlations, which is wildly used as a powerful method for the multi-signals sensing and compression in many fields. In this paper, the characteristics and related works of DCS are reviewed. The framework of DCS is introduced. As DCS’s main portions, sparse representation, measurement matrix selection, and joint reconstruction are classified and summarized. The applications of DCS are also categorized and discussed. Finally, the conclusion remarks and the further research works are provided.  相似文献   
508.
高阳  王雪松  程玉虎  汪婵 《控制与决策》2013,28(8):1219-1225
为了在充分利用高光谱信息的同时减少因数据冗余带来的分类精度降低,提出一种块非负稀疏重构嵌入降维算法。首先,将传统超完备字典转化成超完备块字典;然后,通过计算每个超完备块字典对应样本的最小重构误差,得到块非负稀疏重构权重矩阵;最后,在低维嵌入时,通过同时最小化局部和最大化非局部高光谱数据的非负稀疏信息,得到全局最优的低维子空间高光谱数据。通过3组高光谱数据的实验结果验证了所提出方法的可行性和有效性。  相似文献   
509.
朱丰  张群  柏又青  冯有前  张维强  毕博 《控制与决策》2012,27(11):1669-1675
首先提出一种基于遗传算法的压缩感知重构新方法,并设计了具体的算法流程.该方法运用遗传迭代思想,在稀疏度未知的情况下可准确重构出原始信号,避免了子空间跟踪问题.在此基础上,进一步将所提新方法应用于合成孔径雷达(SAR)高分辨距离像的重构,同时建立了相关的SAR系统模型,构造了有效的稀疏变换矩阵和观测矩阵.仿真结果表明了所提出方法的有效性,同时验证了该方法用于SAR高分辨距离像重构是可行的和鲁棒的.  相似文献   
510.
基于用户模糊聚类的协同过滤推荐研究   总被引:1,自引:1,他引:0  
李华  张宇  孙俊华 《计算机科学》2012,39(12):83-86
传统的协同过滤算法没有考虑用户的自身信息对评分的影响,存在的数据稀疏性、扩展性差等弊端直接影响了推荐系统的推荐质量。对此提出了一种基于用户情景模糊聚类的协同过滤推荐算法。首先根据用户情景信息利用模糊聚类算法得到情景相似的用户群分类,然后在进行协同过滤前预先通过Slope One算法填充用户一项目评分矩阵,以有效改善数据稀疏性和实时性。实验结果表明,改进后的算法在推荐精度上有较大提高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号