首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   148篇
  国内免费   26篇
电工技术   27篇
综合类   16篇
化学工业   438篇
机械仪表   1篇
建筑科学   1篇
矿业工程   11篇
能源动力   164篇
轻工业   3篇
石油天然气   225篇
无线电   1篇
一般工业技术   18篇
冶金工业   12篇
原子能技术   2篇
自动化技术   5篇
  2023年   18篇
  2022年   36篇
  2021年   32篇
  2020年   42篇
  2019年   44篇
  2018年   35篇
  2017年   18篇
  2016年   52篇
  2015年   31篇
  2014年   44篇
  2013年   49篇
  2012年   56篇
  2011年   65篇
  2010年   47篇
  2009年   59篇
  2008年   38篇
  2007年   23篇
  2006年   34篇
  2005年   22篇
  2004年   21篇
  2003年   21篇
  2002年   20篇
  2001年   15篇
  2000年   13篇
  1999年   15篇
  1998年   14篇
  1997年   12篇
  1996年   13篇
  1995年   14篇
  1994年   5篇
  1993年   6篇
  1990年   3篇
  1989年   1篇
  1951年   6篇
排序方式: 共有924条查询结果,搜索用时 15 毫秒
81.
综述了近年来国外C1化学,包括甲烷化学、甲醇化学、合成气化学和CO2化学等技术进展。  相似文献   
82.
K2O是催化剂Fe-MnO/Silicalite-2由合成气制低碳烯烃的有效助剂,K2O能明显提高催化剂活性及低碳烯烃选择性。K2O助剂将抑制部分铁的还原,但能增强催化剂对CO的吸附能力,从而能提高催化剂活性,抑制甲烷的生成,K2O助剂能抑制乙烯在催化剂表面的二次反应(尤其是乙烯的歧化反应),从而提高CO/H及反应制低碳烯烃的选择性。  相似文献   
83.
采用两段串联固定床反应器,以Co/SiO2 作为F-T合成催化剂,以β分子筛负载金属作为加氢裂解/异构化催化剂,研究了从合成气经F-T反应途径一步法选择性合成汽油馏分异构烷烃的反应性能。结果表明,两段固定床系统的F-T合成产物主要为C1~C10烃,而且异构烷烃的选择性较高(I/C+4≈70%)。同时,钯盐前驱体对0.5%Pd/β的加氢裂解/异构化反应性能有很大影响。保持金属总负载质量分数为0.5%,在Pd/β中引入少量Pt或Ni,可以明显改善催化剂活性和稳定性。  相似文献   
84.
合成气一步法制二甲醚催化剂研究进展   总被引:2,自引:0,他引:2  
别良伟  王华 《工业催化》2009,17(2):34-39
简述了二甲醚的物化特性及其应用前景,对现有的几种合成气一步法合成二甲醚的反应机理及动力学模型进行了概述。分别研究了双功能催化剂中的甲醇合成活性组分和甲醇脱水活性组分,CuO/ZnO/Al2O3 作为甲醇合成组分,活性和稳定性较好,甲醇脱水活性组分以γ-Al2O3 、分子筛及其改性后产物较为常用。探讨了双功能催化剂的制备方法及改性方法。  相似文献   
85.
在2个等压串联连续流动同定床反应器内考察了合成气经由二甲醚制取芳烃的反应性能.一段合成二甲醚反应采用Cu/Zn/Al_2O_3和γ-Al_2O_3复合催化剂;二段合成芳烃反应采用HZSM-5(Si/Al=38)催化剂.考察了反应压力对合成芳烃反应的影响,并分析了产物的分布规律.结果表明:在T_1=270℃,T_2=360℃,GHSV=500 h~(-1)条件下,反应压力由2 NPa增加到4 MPa时,芳烃选择性轻微降低,由86.75%降低到83.67%,同时CO转化率从72.47%升高到84.34%,产物中均四甲苯的选择性增加不明显.而当压力增加到5 NPa时,芳烃选择性降低到63.51%,而异构烷烃选择性提高5倍多.反应压力增加,反应平衡倾向于加氢异构化反应;反应压力在2~4 NPa时,有利于芳烃的合成.  相似文献   
86.
The potential of methane steam reforming at microscale is theoretically explored. To this end, a multifunctional catalytic plate microreactor, comprising of a propane combustion channel and a methane steam reforming channel, separated by a solid wall, is simulated with a pseudo 2‐D (two‐dimensional) reactor model. Newly developed lumped kinetic rate expressions for both processes, obtained from a posteriori reduction of detailed microkinetic models, are used. It is shown that the steam reforming at millisecond contact times is feasible at microscale, and in agreement with a recent experimental report. Furthermore, the attainable operating regions delimited from the materials stability limit, the breakthrough limit, and the maximum power output limit are mapped out. A simple operation strategy is presented for obtaining variable power output along the breakthrough line (a nearly iso‐flow rate ratio line), while ensuring good overlap of reaction zones, and provide guidelines for reactor sizing. Finally, it is shown that the choice of the wall material depends on the targeted operating regime. Low‐conductivity materials increase the methane conversion and power output at the expense of higher wall temperatures and steeper temperature gradients along the wall. For operation close to the breakthrough limit, intermediate conductivity materials, such as stainless steel, offer a good compromise between methane conversion and wall temperature. Even without recuperative heat exchange, the thermal efficiency of the multifunctional device and the reformer approaches ~65% and ~85%, respectively. © 2008 American Institute of Chemical Engineers AIChE J, 2009  相似文献   
87.
P. Ouimette 《Fuel》2009,88(3):528-533
The laminar flame velocity of a synthetic gas is calculated numerically with PREMIX and is compared to methane laminar flame velocity. The calculations are performed at different equivalence ratios, initial mixture temperatures and pressures. For each fuel, a correlation for the laminar flame velocity is presented in the form . The low heating value syngas yields a slower laminar flame velocity than methane, especially around stoichiometry. The laminar flame velocities of methane and wood residue syngas react similarly to the effect of pressure, while numerical results suggest that the laminar flame velocity of syngas is more sensitive to the increase of mixture initial temperature.  相似文献   
88.
Biomass-derived syngas (CO2 + CO + H2) has emerged as a potential non-fossil fuel source to yield transportation fuel via Fischer Tropsch Synthesis (FTS) reaction. Thus, the present study demonstrates the conversion of CO2 containing syngas into fuel range hydrocarbon via Fischer Tropsch Synthesis over Fe–Co bimetallic catalyst. The experimental tests were carried out in a fixed bed continuous reactor to investigate the effect of CO2 on CO/CO2 conversion. Accordingly, obtained data were validated by FTS kinetic model for a plug flow reactor. It was found that the unique combination of Fe and Co bimetallic catalyst facilitates both FTS and water gas shift (WGS) reaction simultaneously that helps to convert CO2 along with CO. It was also observed that the presence of iron in the catalyst helps in conversion of CO2 into hydrocarbons, only when a particular concentration of CO2 in syngas is reached, i.e., critical ratio RC (CO2/CO + CO2) due to the occurrence of reverse water gas reaction (RWGS) which varies with the temperature and the feed gas composition (H2/CO/CO2 molar ratio). At 240 °C and hydrogen deficient condition, the critical ratio was measured to be 0.74 whereas for hydrogen balanced condition, it was measured 0.6. The kinetic model developed in the present study predicted trends for % CO conversion, % carbon conversion, and % CO2 conversion which is applicable for a wide range of critical ratio RC (CO2/(CO + CO2) = 0 to 1). The model also predicted that a positive conversion of CO2 could be achieved at lower CO2 concentration by increasing the reaction temperature. At 260 °C and 280 °C, the value of Rc were 0.31 and 0.18 were measured.  相似文献   
89.
A series of experiments have been performed to investigate the influence of reaction temperature, the equivalence ratio (ER), and blending ratio on the gas composition, tar content and higher heating value (HHV) of synthesis gas. H2 content decreased from 10.7 to 8.2% in the range of BR while CO and CH4 increased from 17.4 to 23.1% and 3.4 to 6.3%, respectively. HHV increased with BR and H2/CO showed an opposite trend. The highest HHV and H2/CO were obtained at 100%PW and 100%OS, respectively. Tar content increased from 4.8 to 9.5?g/Nm3 with BR increasing in the range because of a reduction in the endothermic nature of volatile combustion.  相似文献   
90.
The aim of this work is to develop an artificial neural network model to simulate fuel gas production from low-grade residual oil. Effect of operating conditions on the fuel gas composition and performance parameters was studied. The model was validated against the experimental data and found to be in a good agreement. Since oxygen ratio increase improves the nature of water-gas reaction, increased oxygen content moved the reaction toward products and as a result CO and H2 increased. Increased ER highly increased the CO2 and highly decreased CH4, CO and H2 because increased ER means the movement of the process towards combustion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号