首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56505篇
  免费   4314篇
  国内免费   3207篇
电工技术   2277篇
综合类   3888篇
化学工业   10857篇
金属工艺   3624篇
机械仪表   2463篇
建筑科学   5756篇
矿业工程   1848篇
能源动力   4012篇
轻工业   3583篇
水利工程   1413篇
石油天然气   2552篇
武器工业   526篇
无线电   5924篇
一般工业技术   9035篇
冶金工业   2563篇
原子能技术   1296篇
自动化技术   2409篇
  2024年   171篇
  2023年   982篇
  2022年   1608篇
  2021年   1856篇
  2020年   1840篇
  2019年   1731篇
  2018年   1563篇
  2017年   1957篇
  2016年   1908篇
  2015年   2046篇
  2014年   3111篇
  2013年   3700篇
  2012年   3403篇
  2011年   4393篇
  2010年   3236篇
  2009年   3378篇
  2008年   3223篇
  2007年   3499篇
  2006年   3099篇
  2005年   2638篇
  2004年   2274篇
  2003年   1970篇
  2002年   1697篇
  2001年   1298篇
  2000年   1235篇
  1999年   1018篇
  1998年   873篇
  1997年   792篇
  1996年   657篇
  1995年   557篇
  1994年   464篇
  1993年   370篇
  1992年   288篇
  1991年   251篇
  1990年   207篇
  1989年   172篇
  1988年   128篇
  1987年   81篇
  1986年   57篇
  1985年   51篇
  1984年   45篇
  1983年   32篇
  1982年   35篇
  1981年   22篇
  1980年   22篇
  1979年   22篇
  1965年   5篇
  1963年   5篇
  1959年   9篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
In this work, TiO2 nanoparticles are surface modified by NH2-terminated organic moieties arised from 4,4′-methylene diphenyl diisocyanate (MDI). These nanoparticles are incorporated into ether-based segmented polyurethane (SPU) matrix. MDI is utilized as monomer together with poly(tetramethylene oxide) (PTMO) comonomer for preparing the final polymer as well. The NH2-functionalized TiO2 nanoparticles are covalently linked to the NCO terminals of the resulting SPU macromolecules during film preparation stage. Therefore, in addition to butylene glycol, these surface modified nanoparticles with enhanced organophilicity could play the role of the second chain extender of NCO-capped SPU macromolecules through formation of urea linkages. Optical and thermal behaviors of the transparent and flexible film (SPU/TiO2–MDI) is compared with those of unmodified TiO2 (SPU/TiO2) and TiO2-unloaded SPU films. Though the particle loading is only 5 wt.%, incorporation of TiO2 and TiO2–MDI nanoparticles into the SPU polymer enhances significantly the light absorption in UV region at 300–400 nm. SEM images of the prepared films clearly show a considerable decrease in particle aggregation for TiO2–MDI into SPU matrix compared to that of unmodified TiO2. TG analyses indicate a one-step decomposition pattern with onset temperatures of about 360 and 380 °C for neat SPU and SPU/TiO2–MDI, respectively. Moreover, DTA thermograms of both nanocomposites show obviously two exothermic phase transitions in the thermal range of 330–440 °C.  相似文献   
32.
Thermal barrier coatings (TBCs) play a pivotal role in protecting the hot structures of modern turbine engines in aerospace as well as utility applications. To meet the increasing efficiency of gas turbine technology, worldwide research is focused on designing new architecture of TBCs. These TBCs are mainly fabricated by atmospheric plasma spraying (APS) as it is more economical over the electron beam physical vapor deposition (EB-PVD) technology. Notably, bi-layered, multi-layered and functionally graded TBC structures are recognized as favorable designs to obtain adequate coating performance and durability. In this regard, an attempt has been made in this article to highlight the structure, characteristics, limitations and future prospects of bi-layered, multi-layered and functionally graded TBC systems fabricated using plasma spraying and its allied techniques like suspension plasma spray (SPS), solution precursor plasma spray (SPPS) and plasma spray –physical vapor deposition (PS-PVD).  相似文献   
33.
In this study, the crystal structure, thermal, oxygen transport, electrical conductivity and electrochemical properties of the perovskite NdBa0.5Sr0.5Co2O5+δ (NBSC55) are investigated. In the temperature range of 250 °C–350 °C, the weight loss upon heating was due to a partial loss of lattice oxygen and along with a reduction of Co4+ to Co3+. The tend of weight-loss slows down as temperature increased above 350 °C indicating a reduction of Co3+ to Co2+ during this stage. The oxygen migration is dominated by surface exchange process at high temperature range (650-800 °C); however, the bulk diffusion process prevails at low temperature range (500–600 °C). For long-term testing, the polarization resistance of NBSC55 increases gradually form 3.13 Ω cm2 for 2 h to 3.34 Ω cm2 for 96 h at 600 °C and an increasing-rate for polarization resistance is around 0.22% h?1. The power density of the single cell with NBSC55 cathode reached 341 mW cm?2 at 800 °C.  相似文献   
34.
Bulk and surface properties of proton stability and transportation in Y and Nd co-doped BaCeO3 (BCYN), especially the effect of Nd segregation, were investigated by first-principles calculations. Since the structure of doped BaCeO3 at the operating temperature of proton-conducting has been unclear for a long time, we have summarized the latest experimental results and calculated the structure of the asymmetric BCYN for the first time. The results show that compared with Y, Nd doping promotes oxygen vacancy formation, however reduces proton stability. Our calculation can also provide a possible explanation for the formation of space charge layer at the grain boundary of doped BaCeO3 in experiment. Unlike the stable Y in BCYN, Nd is calculated to be easily segregated, which can facilitate both proton hydration and proton transportation near the surface. Moreover, Nd segregation at the grain boundary is predicted to be beneficial for proton transportation between grains.  相似文献   
35.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
36.
It was well known that solvent effect plays a very important role in the catalytic reaction. There are many theoretical studies on the solvent effect in homogeneous catalysis while there are few theoretical studies on the solvent effect in the heterogeneous catalytic reaction and there has been no work to investigate the solvent effect on furfural transformation in heterogeneous catalysis. In the present work, both the density functional calculations and the microkinetic analysis were performed to study the selective hydrogenation of furfural over Pt(111) in the presence of methanol as well as toluene and compared with that in the gas condition. The present results indicated that the methanol can enhance the adsorption strength of furfural and other oxygen-containing reaction species due to its relatively strong polarity properties and this can be a main reason for solvent-induced high activity and selectivity. Another reason is that reaction paths study showed that the presence of methanol solvent makes the dehydrogenation of furfural less thermochemical due to the fact that furfural is more stabilized than that of dehydrogenation species, and methanol also has an inhibition effect on the dehydrogenation of furfural in the kinetic aspect, and further energetic span theory proves highest activity and selectivity for hydrogenation in methanol solvent of vapor, methanol and toluene. Moreover, microkinetic model simulation demonstrated that the activity and selectivity of hydrogenation in methanol is both higher than that in vapor and toluene. The much higher activity in methanol is due to the stabilized adsorbed reactants in the surface, which leads to a higher surface coverage of furfural. It might be proposed based on the present work that a solvent with relatively strong polarity may be favorable for the high selective hydrogenation of furfural.  相似文献   
37.
《Ceramics International》2022,48(21):31265-31272
Bismuth layer structured Na0.5Bi4.5Ti4O15 (NBT) ferroelectric is one of the most promising materials for potential applications at high temperature. However, it is challenged to achieve a balance between high Curie temperature piezoelectric coefficient and excellent thermal stability for NBT piezoceramics. Here, through chemical modification at the A site of NBT with Ca2+, novel (Na0.5Bi0.5)1-xCaxBi4Ti4O15 piezoceramics with excellent properties fabricated by solid state reaction were studied. After doping of Ca2+, the Curie temperature TC increased from 648 °C to 662 °C while the piezoelectric coefficient d33 increased from 14 pC/N to 22 pC/N which can be attributed to the intrinsic contribution of TiO6 octahedral lattice distortion (tilting and rotation) and the extrinsic contribution of the increased density of domain walls. The composition of (Na0.5Bi0.5)0.95Ca0.05Bi4Ti4O15 ceramics with x = 0.05 has the optimal performance with high TC of 655 °C, large d33 of 22 pC/N, high electrical resistivity ρ close to 107 Ω cm at 500 °C and especially excellent thermal stability of d33 only about 5% reduction after being annealed at 625 °C. The work effectively reveals the great potential of CNBT-5 ceramics for high-temperature piezoelectric applications.  相似文献   
38.
高光谱激光雷达谱位合一的角度效应分析   总被引:1,自引:0,他引:1  
高光谱激光雷达以其谱位合一的技术优势为实现超三维精准遥感观测提供了可行途径,因此成为当前激光雷达与高光谱遥感领域共同大力推进的前沿发展方向。目前已有多型原型系统研发出来并得到了原理性验证,然而针对其数据处理核心环节问题的基础技术仍较为欠缺。典型问题之一是不同波段回波信号受激光入射角度的影响,该角度效应限制了高光谱激光雷达实现高性能遥感。以芬兰空间信息研究所高光谱激光雷达原型系统扫描桦树树干为例探讨了该角度效应,发现了不同激光波段对不同入射角度的回波强度响应模式,推导出了角度效应的基本规律及其精细尺度的统计规律,为后续该方向的系统研发、数据处理及信息提取等提供了可借鉴的底层机理与技术基础。  相似文献   
39.
40.
《Ceramics International》2021,47(20):28338-28347
Transition metal oxides have been explored in supercapacitor applications owing to their safety, low cost, high specific capacitance and high electrochemical activity. Among all transition metal oxides, zinc oxide based materials show remarkable response for designing the supercapacitors with high electrochemical activity. Here in, Mn doped ZnO (Zn1-xMnxO3 with x = 0, 0.25, 0.50, 0.75 and 1) was synthesized by a facile hydrothermal method. Doping of Mn into the ZnO increased the surface area and decease the charge transfer resistance for the Zn0.5Mn0.5O3. All the synthesized materials were characterized by x-ray diffraction (XRD), scanning electron microscopy SEM), BET, electrochemical tests and other various analytical techniques to confirm the structural, morphological, textural and suprcapacitive properties. The synthesized material Zn0.5Mn0.5O3 having the porous nanoribons structure with BET surface area (2490 cm2/g). The electrochemical studies showed significantly enhanced response toward pseudocapacitive nature. The synthesized material exhibited the excellent specific capacitance (515F/g), specific energy (28.61 Wh/kg) and specific power (1000 W/kg) at current density of 2 mA/g. Such impressive and superior properties make the MnZnO3 material as promising candidate for new generation supercapacitor applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号