首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1175篇
  免费   100篇
  国内免费   200篇
电工技术   6篇
综合类   73篇
化学工业   241篇
金属工艺   76篇
机械仪表   31篇
建筑科学   21篇
矿业工程   55篇
能源动力   110篇
轻工业   5篇
水利工程   4篇
石油天然气   52篇
武器工业   367篇
无线电   21篇
一般工业技术   329篇
冶金工业   31篇
原子能技术   22篇
自动化技术   31篇
  2024年   8篇
  2023年   29篇
  2022年   84篇
  2021年   35篇
  2020年   48篇
  2019年   36篇
  2018年   41篇
  2017年   82篇
  2016年   62篇
  2015年   52篇
  2014年   52篇
  2013年   73篇
  2012年   47篇
  2011年   69篇
  2010年   55篇
  2009年   68篇
  2008年   75篇
  2007年   93篇
  2006年   87篇
  2005年   63篇
  2004年   47篇
  2003年   51篇
  2002年   39篇
  2001年   29篇
  2000年   23篇
  1999年   25篇
  1998年   17篇
  1997年   18篇
  1996年   12篇
  1995年   10篇
  1994年   16篇
  1993年   9篇
  1992年   9篇
  1991年   3篇
  1990年   3篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1954年   1篇
排序方式: 共有1475条查询结果,搜索用时 0 毫秒
51.
本文对以往燃烧转爆轰数学模型进行了评价.根据现代高性能火炮密实装药的特点,建立了能描述燃烧转爆轰(DDT)现象的一维反应两相流数学模型.其改进包括:考虑火药的可压缩性;提出了与DDT过程相适应的临界点火着火判据;利用熵不等式导出固相体积分数守恒方程;建立了颗粒守恒方程;引进了适合高压的非理想气体状态方程.最后给出了算例.  相似文献   
52.
为了在同一水平上比较含能五唑离子盐的密度、生成热、爆速和爆压,采用密度泛函理论,对近两年合成的五大类16个非金属N_5~ˉ离子盐进行了研究。结果表明在MP2/6-311++G(d,p)理论水平上,根据Born-Haber能量循环计算的五唑离子盐的生成热为95.2~1362.0 k J·mol~(-1),三唑类N_5~ˉ离子盐的平均生成热最高。这些五唑离子盐的密度为1.395~1.650 g·cm~(-3)(298.15 K),远远低于理论预测的全氮化合物的密度。通过Kamlet-Jacobs公式计算的爆速和爆压结果与EXPLO5的计算结果吻合良好,大部分五唑含能离子盐的爆速为6500~8000 m·s~(-1);爆压为15~26 GPa,低于RDX的爆速和爆压。N_5~ˉ的缩二胍盐、羟胺盐和肼盐的理论爆轰性能突出,它们的爆速(8622~9032 m·s~(-1))与RDX持平或者略高,爆压(29.5~32.3 GPa)均低于RDX,并未展现出全氮阴离子衍生物的明显优势,也远未达到对它们超高能量的预期。  相似文献   
53.
采用高压湿氧冲爆技术对粉渣原料进行预处理,利用单因素和正交实验优化预处理条件,得到最佳的预处理条件为温度210℃,氧气压力1.2MPa,液固比3:1,保温时间10min。预处理后的原料松弛度提高,比表面积升高至0.298m2/g,变为原来的12倍,从而提高了原料中纤维素的转化率。  相似文献   
54.
爆破式ARM 对典型雷达目标的毁伤效果研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析爆破式反辐射导弹(anti-radiationmissile,ARM)对典型相控阵雷达目标的毁伤效果,对ARM爆破战斗部的引战配合进行研究。在分析空地反辐射导弹末段弹道特性及爆破式战斗部毁伤机理的基础上,建立了爆破式ARM对典型目标触发起爆和近炸起爆时的毁伤模型,并采用Monte-Carlo仿真方法确定了近炸起爆的最佳起爆高度及不同起爆方式的导弹单发毁伤概率。仿真结果表明:对于天线高度较高的目标适宜采用近炸起爆,对于天线高度较低的目标适宜采用触发起爆。  相似文献   
55.
郭会蕊  夏存芝 《广东化工》2009,36(11):218-219
对山东滨化集团股份有限责任公司环氧丙烷储存方式由固定顶的立式储罐变为球罐储存进行了介绍。  相似文献   
56.
Results of experimental investigations of an expanding multifront detonation wave are presented. Two stages of spontaneous formation of new disturbances and transverse waves on the expanding detonationwave front are observed. The main mechanisms of reinitiation of detonation waves are discussed. Twodimensional numerical simulation of the dynamics of a multifront detonation wave in a linearly expanding channel is performed. The effect of spontaneous formation of new disturbances and new transverse waves is confirmed by computations, and the main mechanism of multiplication of transverse waves is the instability of detonationwavefront elements at the stage they cease to be in the overdriven state and are attenuated during expansion.  相似文献   
57.
Interaction of impact shock waves that could detonate an explosive (Composition B) confined in a thin-walled container impacted by a cone-nosed projectile is numerically studied, based on the Forest Fire explosive reaction rate model. The normal impact on the container by a small projectile with a conical nose is considered. Depending on the cone angle of the nose part of the projectile, the zone of interaction of initiating shock waves can be remote from the central axis of the impact. The off-the-central-axis detonation is interpreted from the viewpoint of different interaction modes in the explosive container, which are reflected from the cassette wall, change their directions, and superimpose onto each other, leading to explosive detonation.  相似文献   
58.
The synthesis of detonation diamonds from a mixture of RDX labeled by C14 isotope with soot was studied experimentally. It was shown that a considerable portion of the diamonds (24.7 ± 3.4)% are formed from the carbon of RDX molecules. The degree of conversion of the carbon atoms of soot to the diamond phase is (16.0 ± 1.6)%. __________ Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 5, pp. 117–118, September–October, 2005.  相似文献   
59.
Detonation Velocity of Emulsion Explosives Containing Cenospheres   总被引:2,自引:0,他引:2  
The detonation velocity of an emulsion explosive containing hollow alumosilicate microspheres (cenospheres) as the sensitizer is measured. The size of the microspheres is 50–250 μm. The relations between the detonation velocity and the charge density and diameter are compared for emulsion explosives containing cenospheres or glass microballoons as the sensitizer. It is shown that for a 55 mm diameter charge, the maximum detonation velocity of the composition with cenospheres of size 70–100 μm is 5.5–5.6 km/sec, as well as for 3M glass microballoons. The critical diameter for the emulsion explosive with cenosphere is 1.5–2 times larger than that for the emulsion explosive with glass microballoons and is 35–40 mm. __________ Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 5, pp. 119–127, September–October, 2005.  相似文献   
60.
A computational investigation is performed to study the effects of injection velocity on the main dynamic parameters of the fuel cloud released into the open atmosphere. The volume, shape, and growth rate of the cloud, turbulence intensity, as well as the distribution of fuel concentration, temperature gradient, and self-ignition induction time are the most important parameters determining the mode of combustion that propagates through the cloud. A modified KIVA-based program is employed to fulfill the calculations. Systems of equations are solved by a finite-volume method. The k-ɛ model and discrete droplet model are applied for modeling gas-phase turbulence and liquid spray, respectively. The fuel-injection velocity is shown to have a major effect on turbulence intensity and uniformity of the cloud. With increasing injection velocity, the detonable part of the cloud rotates sooner and faster, and there is less time for ignition. A comparison with experimental results is performed for validation. __________ Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 5, pp. 29–40, September–October, 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号