首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17786篇
  免费   1921篇
  国内免费   1135篇
电工技术   1366篇
综合类   1681篇
化学工业   2658篇
金属工艺   1704篇
机械仪表   1499篇
建筑科学   1154篇
矿业工程   1293篇
能源动力   683篇
轻工业   1153篇
水利工程   605篇
石油天然气   749篇
武器工业   200篇
无线电   1344篇
一般工业技术   2203篇
冶金工业   580篇
原子能技术   194篇
自动化技术   1776篇
  2024年   90篇
  2023年   297篇
  2022年   506篇
  2021年   565篇
  2020年   651篇
  2019年   542篇
  2018年   533篇
  2017年   668篇
  2016年   752篇
  2015年   765篇
  2014年   1148篇
  2013年   1221篇
  2012年   1329篇
  2011年   1402篇
  2010年   1094篇
  2009年   1059篇
  2008年   867篇
  2007年   1199篇
  2006年   1026篇
  2005年   855篇
  2004年   727篇
  2003年   579篇
  2002年   493篇
  2001年   419篇
  2000年   380篇
  1999年   322篇
  1998年   212篇
  1997年   233篇
  1996年   180篇
  1995年   136篇
  1994年   133篇
  1993年   80篇
  1992年   72篇
  1991年   54篇
  1990年   53篇
  1989年   43篇
  1988年   32篇
  1987年   14篇
  1986年   22篇
  1985年   14篇
  1984年   15篇
  1983年   16篇
  1982年   15篇
  1981年   3篇
  1980年   9篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this study, the effects of cell temperature and relative humidity on charge transport parameters are numerically analyzed. In order to perform this analysis, three-dimensional and anisotropic numerical models are developed. The numerical models are integrated into the experimental values for anisotropic electrical conductivities, as depending on cell temperature and relative humidity, that were obtained from our previous study. The achieved results indicate that the values of current densities in the in-plane direction increase with increasing cell temperature and relative humidity, while the current densities reach a maximum in the rib regions for both the numerical model at the through-plane direction. The behaviors of electrolyte potentials are similar with changes in the cell temperature and relative humidity. In addition, the cathode electrical potentials in both the in-plane direction and through-plane direction do not change to a considerable amount with increasing cell temperature and relative humidity.  相似文献   
2.
《Ceramics International》2022,48(4):4401-4423
Nano-zirconia has been widely applied due to its excellent physical and chemical properties (e.g., high strength, corrosion resistance, oxygen ion conductivity). Existing preparation methods of nano-zirconia tend to require long reaction time, and the sizes of final particles are large with uneven distributions. Sub-/supercritical hydrothermal synthesis of nanoparticles is favored by researchers owing to controllable reaction process, uniform particle size distribution, good reproducibility, short reaction time, high conversion rate and harmlessness to environment. In this paper, the characteristics and mechanisms of dissolution, crystallization and growth of nano-zirconia during sub-/supercritical hydrothermal synthesis are systematically reviewed. The influences of process and material parameters on the size and purity of particles are analyzed. Then, the reaction mechanism and product phase transition mechanism during hydrothermal synthesis of zirconia are summarized to provide a theoretical reference for the oriented preparation. Finally, the improvement and commercialization of sub-/supercritical hydrothermal synthesis technology are evaluated, and the future research topics are proposed.  相似文献   
3.
This paper assesses building integrated photovoltaic (BIPV) installation parameters based on the profit generated by a photovoltaic system. It takes into consideration a home building case study and it investigates its monthly energy demand based on a specific location and a typical occupancy. The capability of a photovoltaic (PV) system to generate more profit occurs when solar intensity is maximum while the electric energy price is at its highest rate. The paper traces a framework that encompasses different aspects such as energy demand, energy price, and solar intensity. This framework identifies profit alternatives according to different installation parameters. A tool that predicts a PV installation hourly electric energy production is developed. The profit generated is simulated for home buildings located in Beirut (Lebanon) and Xihua (China), both at 33.8° latitude north. The paper highlights a new approach for BIPV installations, taking into account weather conditions, energy demand, and electric energy utility rates.  相似文献   
4.
This study aimed to evaluate the physicochemical characteristics and sensory attributes of beef burgers with the addition of pea fibre as a partial substitute of meat or fat. Three formulations were prepared: control (CON) – similar to the commercial formulation; fibre/less meat (FLM)—5% meat reduction and addition of 1% pea fibre; fibre/less fat (FLF)—7% fat reduction and addition of 1% pea fibre. Non-significant differences were obtained for pH, colour parameters (L* and b*), texture profile, cooking loss and size reduction among formulations. Moreover, sensory analysis with consumers of beef burgers did not indicate differences among the formulations for all the analysed attributes. Therefore, pea fibre is a promising partial replacer for meat and fat in beef burgers due to the preservation of technological parameters and sensory acceptance.  相似文献   
5.
《Ceramics International》2020,46(12):19942-19951
1D TiO2 nanotube arrays (TNTs), as versatile nanostructures, have attracted a considerable amount of scientific attention, particularly in photocatalytic applications. In the present study, UV radiation-assisted anodization method with various irradiation times (30–120 min) was employed as a preferable approach to fabricating TNTs with remarkable optical property and photocatalytic activity. The results revealed that in situ irradiation not only improved the surface area (from 30.10 to 48.5 m2), but also increased the roughness factor (from 77.27 to 124.73). Furthermore, UV radiation had a significant impact on optical property and by altering elemental composition, led to a red shift in absorption edge (from 3.2 to 1.4eV). Meanwhile, voltammetric experiments showed that 120 min UV radiation during anodization was able to substantially cause a surge of the photocurrent density and the photoconversion efficiency of TNTs from 0.15 to 0.55 mA cm−2 and from 13% to 40%, respectively. As a consequence of the improvement in optical property and photochemical features, anodic TNTs fabricated under 120 min UV radiation could increase the photocatalytic degradation of 2,4-DCP from 75% to 100%. Moreover, the kinetics study showed that all photocatalytic reactions followed zero-order kinetics which rate constant over the synthesized TNTs under 120 min UV radiation was about 5.1 times greater than that of conventionally fabricated TNTs. Likewise, the pathway of photocatalytic degradation and the proportion of reactive species in this process were assessed by scavenging tests. The results confirmed that holes (h+) play the main role that 53% of photocatalytic degradation occurred via both direct and indirect reactions with h+ species. The rest of the degradation pathways were also allocated to e and O2 species by accounting for 37% and 10%, respectively.  相似文献   
6.
7.
The present study attempts quantitative determination of changes in the morphological surface features viz. fractal dimension, lower and upper cut off length scale through Power Spectral Density analysis prior to and after irradiation of 100 KeV Ar+ ion beam at incidence angles of 0°, 40° and 60° on ZnO thin films. All the unirradiated and irradiated samples are subjected to photoelectrochemical characterization and a correlation between photoelectrochemical performance and morphological parameters is established. Sample irradiated at 40° angle at the fluence of 5 × 1016 ions/cm2 is found to possess maximum fractal dimension of 2.72, lower and upper cut off length scale of 3.16 nm and 63.00 nm respectively. This sample exhibits maximum photocurrent density of 3.19 mA/cm2 and applied bias photon-to-current efficiency of 1.12% at 1.23 V/RHE. Hydrogen gas collected for duration of 1 h for the same sample was ~4.83 mLcm?2.  相似文献   
8.
《Ceramics International》2021,47(24):34159-34169
Given the remarkable performances of rare earth multiferroic ortho-ferrites with magnetic optical and dielectric properties, the Y1-xSrxFeO3 (x = 0, 0.05, 0.1, 0.15) perovskite structure microwave absorbing ferrite materials was successfully synthesized by Sr2+ ions A-site doping based on sol-gel technology in this paper. The XRD of all samples was refined with FullProf software, which confirmed the formation of the orthogonal perovskite structure (SG: Pnma). The SEM and TEM results display the average particles size of the samples is distributed between 110 and 160 nm. The increase of Sr doping concentration leads to the increase of particles size, which may be related to the growth of preferred orientation and incomplete substitution. The XPS analysis shows that Fe3+ was accompanied by the presence of Fe2+ with the doping of Sr2+ ions and oxygen vacancies increased significantly. The samples change from weak ferromagnetic state to paramagnetic state with the increase of Sr content. The minimum reflection loss (RL) of the Y0.95Sr0.05FeO3 samples at 12.2 GHz reached −30.87 dB with thickness of 2.2 mm, where its effective absorption bandwidth (EAB, RL ≤ −10 dB) reached 2.4 GHz (11.3–13.7 GHz). Moreover, the EAB of the Y0.85Sr0.15FeO3 samples reached 2.64 GHz, and the corresponding range is 9.0–11.6 GHz (X-band).  相似文献   
9.
Cadmium Sulfide and Ferrous doped Cadmium Sulfide thin films have been prepared on different substrates using an electrodeposition technique. Linear sweep voltammetric analysis has been carried out to determine deposition potential of the prepared films. X-ray diffraction analysis showed that the prepared films possess polycrystalline nature with hexagonal structure. Surface morphology and film composition have been analyzed using Scanning electron microscopy and Energy dispersive analysis by X-rays. Optical absorption analysis showed that the prepared films are found to exhibit Band gap value in the range between 2.3, 2.8 eV for Cadmium Sulfide and Ferrous doped Cadmium Sulfide.  相似文献   
10.
Hybrid organic–inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge‐carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin–orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high‐performance optoelectronics and spintronics. Here, 3D hybrid organic–inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号