首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1850篇
  免费   84篇
  国内免费   199篇
电工技术   10篇
综合类   106篇
化学工业   763篇
金属工艺   192篇
机械仪表   185篇
建筑科学   18篇
矿业工程   12篇
能源动力   39篇
轻工业   13篇
石油天然气   2篇
武器工业   24篇
无线电   252篇
一般工业技术   404篇
冶金工业   93篇
原子能技术   7篇
自动化技术   13篇
  2024年   9篇
  2023年   31篇
  2022年   39篇
  2021年   45篇
  2020年   21篇
  2019年   28篇
  2018年   19篇
  2017年   25篇
  2016年   27篇
  2015年   26篇
  2014年   46篇
  2013年   44篇
  2012年   64篇
  2011年   61篇
  2010年   60篇
  2009年   84篇
  2008年   116篇
  2007年   95篇
  2006年   85篇
  2005年   91篇
  2004年   77篇
  2003年   95篇
  2002年   57篇
  2001年   78篇
  2000年   80篇
  1999年   71篇
  1998年   71篇
  1997年   85篇
  1996年   106篇
  1995年   89篇
  1994年   75篇
  1993年   64篇
  1992年   48篇
  1991年   41篇
  1990年   29篇
  1989年   41篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有2133条查询结果,搜索用时 15 毫秒
61.
热压氮化硅在1200℃的高温疲劳损伤   总被引:1,自引:3,他引:1  
研究了热压氮化硅陶瓷的室温和高温力学性能及在1200℃的高温疲劳损伤行为,发现材料的弹性模量、抗变强度与断裂韧性均随温度升高而下降,但在1000℃以上降低最为显著。在1200℃高温疲劳寿命与应力之间符合单对数线性关系经分析发现这种现象与失效的热激活过程有关。通过对实验数据,XRD相结构、变形动力学过程和断口的微观分析证明,陶瓷高温疲劳失效机理为“杂质空穴复合作用机制”。对热压氮化硅来说,失效机理主  相似文献   
62.
压痕残余应力对氮化硅基复合材料阻力曲线行为的影响   总被引:3,自引:1,他引:3  
席俊  关振铎 《硅酸盐学报》1997,25(2):163-168
通过压痕小裂纹直接量测法获得了TiC,TiN/Si3N4复合材料的阻力曲线,采用更具合理性的指数经验公式拟合处理实验数据,初步探讨了K∞,K^*R,ΔC,等参数的物理意义。对压痕残余应力消除前 实验结果进行比较,发现压痕残余应力的消除,提高了材料的极限断裂韧性值K^*R,却大大减少了裂纹稳态生长的容限,使得材料的脆性行为更为突出。  相似文献   
63.
谢凯  张长瑞 《化学世界》1997,38(10):518-520
本文报道了以低分子聚碳硅烷为反应源物质,以氨气为反应气氛,采用化学气相裂解方法,制备了粒径为0.05~0.1μm的Si-C-N复合相超微粉,考察了各种反应条件对生成粒子性能的影响规律,并探讨了Si-C-N粒子的生成机理。  相似文献   
64.
利用EPMA和XRD的分析方法,研究了Si_3N_4陶瓷材料表面氧化层的组成。结果表明,Si_3N_4陶瓷材料表面的氧化层,是由方石英相和含有Al_2O_3、CaO等杂质的SiO_2玻璃相所组成。其中SiO_2玻璃相中Al_2O_3、CaO等杂质的含量,随着氧化时间的增加而逐渐增加。  相似文献   
65.
氮化硅细粉(粒度<0.088 mm,w(β-Si3N4)>95%)、碳化硅(w(SiC)>98%,粒度分别为2.8~0.9mm、0.9~0.15 mm、<0.115 mm和<0.063 mm四级)、硅粉(粒度<0.045 mm,w(Si)>98%)和硅灰(w(SiO2)=98.3%)为原料,以木质素磺酸钙水溶液作成型结合剂,采用150 MPa的压力成型为65 mm×114 mm×230mm的Si3N4-SiC、Si3N4-SiC-Si和Si3N4-SiC-SiO2三种试样.在空气气氛中,以50℃·h-1的升温速度升至800℃保温4 h,再升至1450℃保温2 h,自然冷却至室温后,测定烧成后试样的常温耐压强度、常温抗折强度、1400℃下的高温抗折强度、显气孔率、体积密度和残氮率,并采用XRD、SEM和EPMA等手段分析烧后试样的相组成和显微结构.结果表明3种试样在空气气氛中烧成后的高温(1400℃)和常温抗折强度都比较高,显气孔率都比较低,而耐压强度则以Si3N4-SiC试样的最高;烧成后试样中心区域的残氮率以Si3N4-SiC-Si试样的最高,Si3N4-SiC-SiO2试样的次之,Si3N4-SiC试样的最小;在空气气氛中烧成后,Si3N4-SiC试样中的Si3N4分解较多,SiC-Si3 N4-Si试样的表面和内部都明显含有单质Si,SiC-Si3N4-SiO2试样表面区域的Si2N2O晶体发育很好,而内部区域的晶体发育较小.  相似文献   
66.
67.
Si3N4-Al2O3-CaO系材料烧结性能及反应过程研究   总被引:2,自引:1,他引:2  
《耐火材料》2003,37(3):128-132
氮化硅、活性氧化铝微粉和纯铝酸钙水泥为原料,研究了在焦炭保护情况下,Si3N4-Al2O3-CaO系材料经1500℃、1600℃和1650℃烧成时的烧结性能和物相变化,同时借助SEM、EDX和XRD等手段对其显微结构和反应过程进行了观察和分析.结果表明,该体系材料的烧结性能与试样的组成和烧成温度有关温度由1500℃升至1600℃,试样体积密度增加,显气孔率降低,但升至1650℃时,试样的体积密度反而下降,显气孔率增加;在同一温度下,试样中Si3N4含量增加,体积密度下降.同时,试样在烧成过程中存在质量变化现象1500℃烧成试样均表现为质量增加,当温度升至1600℃和1650℃时,试样质量又由增加变为减小.根据热力学分析推测,试样烧成过程中存在复杂的化学反应,低于1500℃时,反应Si3N4(s)+3/2CO(g)=3/2Si2N2O(s)+1/2N2(g)+3/2C(s)是试样质量增加的主要机理;高于1500℃时,反应Si3N4(s)+3/2CO(g)=3/2SiC(s)+3/2SiO(g)+2N2(g)是引起质量损失的主要机理.XRD分析显示,烧后试样中除存在刚玉和Si3N4相外,在烧成过程中还发生了物相变化1500℃时出现了钙黄长石相,1600℃时钙黄长石又消失,出现了Ca-α-Sia-lon和β-Sialon,温度升至1650℃时,Ca-α-Sialon又消失,β-Sialon却大量出现于部分试样中.因此可以认为,钙黄长石是铝酸钙水泥中CaO与Si3N4表面的SiO2和Al2O3反应形成的,温度升高时,其与Si3N4进一步反应形成Ca-α-Sialon,1650℃时Ca-α-Sialon消失,可能是在该温度下,试样内部的化学反应导致试样组成偏离Ca-α-Sialon相区;而β-Sialon是Si3N4固溶Al2O3反应形成的,其含量取决于试样中Al2O3、Si3N4的含量及烧成温度.  相似文献   
68.
以硅(Si)粉、六方氮化硼(h-BN)为原料,在氮气(N2)中用燃烧合成(combustion synthesis,CS)气固反应法,原位生成可加工氮化硅/氮化硼(Si3N4/h-BN)复相陶瓷.考察了h-BN不同体积分数(下同)对Si3N4/h-BN复相陶瓷可加工性的影响.结果表明:在实验条件下,Si粉氮化完全,不存在残余的游离Si.Si3N4/h-BN复相陶瓷中以柱状β-Si3N4为主相,β-Si3N4晶粒之间为针状h-BN相.随着h-BN相含量的增加,Si3N4/h-BN复相陶瓷的可加工性提高,抗弯强度先减小后增加.h-BN含量为25%时,Si3N4/h-BN复相陶瓷的抗弯强度最低.  相似文献   
69.
评述了Si3N4基复合材料的研究与应用进展,其中重点介绍了Si3N4基复合材料的制备工艺和力学性能;同时分析了我国在该领域的研究现状,并提出了今后的发展前景.  相似文献   
70.
采用新型振荡压力烧结技术制备高性能氮化硅陶瓷,并对比热压烧结技术,研究了不同工艺下氮化硅陶瓷的致密度、物相、晶粒尺寸、微观形貌及力学性能变化规律,分析了振荡压力对氮化硅陶瓷的致密化作用.结果表明:振荡压力烧结工艺下氮化硅陶瓷实现了α相到β相的物相完全转变,相对密度达到了99.82%;对比热压烧结工艺,振荡压力作用下氮化硅陶瓷的晶粒尺寸明显增加,晶粒平均长径比由3.79增加到4.86,弯曲强度、硬度及断裂韧性分别提高到1333 MPa、16.2 GPa、12.1 MPa·m^(1/2),断裂表面能也明显提高.OPS试样晶粒表面观察到了明显的形变条纹和位错运动区域.振荡压力的引入提高了致密化速率和晶粒的生长驱动力,且能够促进氮化硅在致密化过程中塑性形变的产生,有效加快了烧结致密化进程.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号