首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116094篇
  免费   12856篇
  国内免费   8717篇
电工技术   3954篇
技术理论   1篇
综合类   8024篇
化学工业   23955篇
金属工艺   7944篇
机械仪表   6307篇
建筑科学   3804篇
矿业工程   5225篇
能源动力   2501篇
轻工业   5916篇
水利工程   1946篇
石油天然气   3436篇
武器工业   992篇
无线电   15393篇
一般工业技术   17121篇
冶金工业   4413篇
原子能技术   1209篇
自动化技术   25526篇
  2024年   377篇
  2023年   2116篇
  2022年   3331篇
  2021年   4609篇
  2020年   4194篇
  2019年   3561篇
  2018年   3141篇
  2017年   3773篇
  2016年   4283篇
  2015年   4583篇
  2014年   6457篇
  2013年   6558篇
  2012年   7673篇
  2011年   9667篇
  2010年   7326篇
  2009年   8025篇
  2008年   7229篇
  2007年   8050篇
  2006年   7034篇
  2005年   6172篇
  2004年   5087篇
  2003年   4584篇
  2002年   3897篇
  2001年   2589篇
  2000年   2425篇
  1999年   2018篇
  1998年   1585篇
  1997年   1245篇
  1996年   1118篇
  1995年   886篇
  1994年   813篇
  1993年   633篇
  1992年   495篇
  1991年   364篇
  1990年   278篇
  1989年   267篇
  1988年   172篇
  1987年   134篇
  1986年   146篇
  1985年   101篇
  1984年   78篇
  1983年   90篇
  1982年   91篇
  1981年   64篇
  1980年   69篇
  1979年   55篇
  1978年   35篇
  1977年   44篇
  1976年   40篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Hormone-specific anticancer drugs for breast cancer treatment can cause serious side effects. Thus, treatment with natural compounds has been considered a better approach as this minimizes side effects and has multiple targets. 6-Gingerol is an active polyphenol in ginger with various modalities, including anticancer activity, although its mechanism of action remains unknown. Increases in the level of reactive oxygen species (ROS) can lead to DNA damage and the induction of DNA damage response (DDR) mechanism, leading to cell cycle arrest apoptosis and tumorsphere suppression. Epidermal growth factor receptor (EGFR) promotes tumor growth by stimulating signaling of downstream targets that in turn activates tumor protein 53 (p53) to promote apoptosis. Here we assessed the effect of 6-gingerol treatment on MDA-MB-231 and MCF-7 breast cancer cell lines. 6-Gingerol induced cellular and mitochondrial ROS that elevated DDR through ataxia-telangiectasia mutated and p53 activation. 6-Gingerol also induced G0/G1 cell cycle arrest and mitochondrial apoptosis by mediating the BAX/BCL-2 ratio and release of cytochrome c. It also exhibited a suppression ability of tumorsphere formation in breast cancer cells. EGFR/Src/STAT3 signaling was also determined to be responsible for p53 activation and that 6-gingerol induced p53-dependent intrinsic apoptosis in breast cancer cells. Therefore, 6-gingerol may be used as a candidate drug against hormone-dependent breast cancer cells.  相似文献   
982.
Peptidoglycan recognition proteins (PGRPs) are ubiquitous among animals and play pivotal functions in insect immunity. Non-catalytic PGRPs are involved in the activation of immune pathways by binding to the peptidoglycan (PGN), whereas amidase PGRPs are capable of cleaving the PGN into non-immunogenic compounds. Drosophila PGRP-LB belongs to the amidase PGRPs and downregulates the immune deficiency (IMD) pathway by cleaving meso-2,6-diaminopimelic (meso-DAP or DAP)-type PGN. While the recognition process is well analyzed for the non-catalytic PGRPs, little is known about the enzymatic mechanism for the amidase PGRPs, despite their essential function in immune homeostasis. Here, we analyzed the specific activity of different isoforms of Drosophila PGRP-LB towards various PGN substrates to understand their specificity and role in Drosophila immunity. We show that these isoforms have similar activity towards the different compounds. To analyze the mechanism of the amidase activity, we performed site directed mutagenesis and solved the X-ray structures of wild-type Drosophila PGRP-LB and its mutants, with one of these structures presenting a protein complexed with the tracheal cytotoxin (TCT), a muropeptide derived from the PGN. Only the Y78F mutation abolished the PGN cleavage while other mutations reduced the activity solely. Together, our findings suggest the dynamic role of the residue Y78 in the amidase mechanism by nucleophilic attack through a water molecule to the carbonyl group of the amide function destabilized by Zn2+.  相似文献   
983.
Iron (Fe) and phosphorus (P) are two essential elements for plant growth. Both elements are abundant in soils but with poor availability for plants, which favor their acquisition by developing morphological and physiological responses in their roots. Although the regulation of the genes related to these responses is not totally known, ethylene (ET) and nitric oxide (NO) have been involved in the activation of both Fe-related and P-related genes. The common involvement of ET and NO suggests that they must act in conjunction with other specific signals, more closely related to each deficiency. Among the specific signals involved in the regulation of Fe- or P-related genes have been proposed Fe-peptides (or Fe ion itself) and microRNAs, like miR399 (P), moving through the phloem. These Fe- or P-related phloem signals could interact with ET/NO and confer specificity to the responses to each deficiency, avoiding the induction of the specific responses when ET/NO increase due to other nutrient deficiencies or stresses. Besides the specificity conferred by these signals, ET itself could confer specificity to the responses to Fe- or P-deficiency by acting through different signaling pathways in each case. Given the above considerations, there are preliminary results suggesting that ET could regulate different nutrient responses by acting both in conjunction with other signals and through different signaling pathways. Because of the close relationship among these two elements, a better knowledge of the physiological and molecular basis of their interaction is necessary to improve their nutrition and to avoid the problems associated with their misuse. As examples of this interaction, it is known that Fe chlorosis can be induced, under certain circumstances, by a P over- fertilization. On the other hand, Fe oxides can have a role in the immobilization of P in soils. Qualitative and quantitative assessment of the dynamic of known Fe- and P-related genes expression, selected ad hoc and involved in each of these deficiencies, would allow us to get a profound knowledge of the processes that regulate the responses to both deficiencies. The better knowledge of the regulation by ET of the responses to these deficiencies is necessary to properly understand the interactions between Fe and P. This will allow the obtention of more efficient varieties in the absorption of P and Fe, and the use of more rational management techniques for P and Fe fertilization. This will contribute to minimize the environmental impacts caused by the use of P and Fe fertilizers (Fe chelates) in agriculture and to adjust the costs for farmers, due to the high prices and/or scarcity of Fe and P fertilizers. This review aims to summarize the latest advances in the knowledge about Fe and P deficiency responses, analyzing the similarities and differences among them and considering the interactions among their main regulators, including some hormones (ethylene) and signaling substances (NO and GSNO) as well as other P- and Fe-related signals.  相似文献   
984.
Extracellular vesicles (EVs) are cell-derived nanostructures that mediate intercellular communication by delivering complex signals in normal tissues and cancer. The cellular coordination required for tumor development and maintenance is mediated, in part, through EV transport of molecular cargo to resident and distant cells. Most studies on EV-mediated signaling have been performed in two-dimensional (2D) monolayer cell cultures, largely because of their simplicity and high-throughput screening capacity. Three-dimensional (3D) cell cultures can be used to study cell-to-cell and cell-to-matrix interactions, enabling the study of EV-mediated cellular communication. 3D cultures may best model the role of EVs in formation of the tumor microenvironment (TME) and cancer cell-stromal interactions that sustain tumor growth. In this review, we discuss EV biology in 3D culture correlates of the TME. This includes EV communication between cell types of the TME, differences in EV biogenesis and signaling associated with differing scaffold choices and in scaffold-free 3D cultures and cultivation of the premetastatic niche. An understanding of EV biogenesis and signaling within a 3D TME will improve culture correlates of oncogenesis, enable molecular control of the TME and aid development of drug delivery tools based on EV-mediated signaling.  相似文献   
985.
986.
We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.  相似文献   
987.
988.
Hydrogels are recognized as one of the most promising materials for e-skin devices because of their unique applicable functionalities such as flexibility, stretchability, biocompatibility, and conductivity. Beyond the excellent sensing functionalities, the e-skin devices further need to secure a target-oriented 3D structure to be applied onto various body parts having complex 3D shapes. However, most e-skin devices are still fabricated in simple 2D film-type devices, and it is an intriguing issue to fabricate complex 3D e-skin devices resembling target body parts via 3D printing. Here, a material design guideline is provided to prepare multifunctional hydrogels and their target-oriented 3D structures based on extrusion-based 3D printing. The material design parameters to realize target-oriented 3D structures via 3D printing are systematically derived from the correlation between material design of hydrogels and their gelation characteristics, rheological properties, and 3D printing processability for extrusion-based 3D printing. Based on the suggested material design window, ion conductive self-healable hydrogels are designed and successfully applied to extrusion-based 3D printing to realize various 3D shapes.  相似文献   
989.
The introduction of metallic fillers to polymers via the photopolymerization approach can endow the composite materials with some unique properties, but the relevant research is still scarce due to the issue of light penetration and inner filter effect. Herein, for the first time the fabrication of photocomposites based on fine iron powder (i.e., a typical kind of metallic filler) is reported in this work. The free radical polymerization of two different acrylate monomers, poly(ethylene glycol) diacrylate and trimethylolpropane triacrylate, is performed in the presence of iron filler under mild conditions (i.e., light emitting diode (LED)@405 nm irradiation at room temperature under air). And the real-time Fourier transform infrared spectroscopy reveals remarkable photopolymerization kinetics of acrylates with high final conversions and fast polymerization rates despite the increasing contents of iron filler in the composites. Interestingly, the 3D printing technique is applied to the iron filler-based composites to produce tridimensional patterns with excellent spatial resolution. This work not only paves the way for the investigation of photocomposites based on metallic fillers through photochemical methods, but also broadens the potential application prospects.  相似文献   
990.
Recently, polyvinylidene fluoride (PVDF) based nanocomposites have attracted much attention for next-generation wearable applications such as promising piezoelectric energy harvesters (nanogenerators), energy storage devices, sensing devices, and biomedical devices due to their high flexibility, and high dielectric and piezoelectric properties. 3D printing technology, PVDF based piezoelectric nanocomposites, the studies based on 3D printing of PVDF based piezoelectric nanocomposites by inkjet printing and fused deposition modeling, and enhancements of energy harvesting and storage performance of nanocomposites by structural design are comprehensively overviewed here. An insight is provided into 3D printing techniques, structure and properties of PVDF based polymers, various nanofillers and production methods for nanocomposites, solutions to enhance β phase (crystallinity) of PVDF, and improvements of nanocomposites’ breakdown strength, discharged energy density, and piezoelectric power output by mentoring structural design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号