首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   479篇
  免费   368篇
  国内免费   4篇
电工技术   2篇
综合类   6篇
化学工业   60篇
金属工艺   3篇
机械仪表   3篇
建筑科学   3篇
轻工业   2篇
武器工业   3篇
无线电   35篇
一般工业技术   27篇
自动化技术   707篇
  2024年   7篇
  2023年   9篇
  2022年   8篇
  2021年   6篇
  2020年   8篇
  2019年   14篇
  2018年   48篇
  2017年   127篇
  2016年   173篇
  2015年   150篇
  2014年   156篇
  2013年   12篇
  2012年   8篇
  2011年   15篇
  2010年   12篇
  2009年   13篇
  2008年   10篇
  2007年   9篇
  2006年   14篇
  2005年   9篇
  2004年   8篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
排序方式: 共有851条查询结果,搜索用时 15 毫秒
61.
We present a technique to efficiently importance sample distant, all‐frequency illumination in indoor scenes. Standard environment sampling is inefficient in such cases since the distant lighting is typically only visible through small openings (e.g. windows). This visibility is often addressed by manually placing a portal around each window to direct samples towards the openings; however, uniformly sampling the portal (its area or solid angle) disregards the possibly high frequency environment map. We propose a new portal importance sampling technique which takes into account both the environment map and its visibility through the portal, drawing samples proportional to the product of the two. To make this practical, we propose a novel, portal‐rectified reparametrization of the environment map with the key property that the visible region induced by a rectangular portal projects to an axis‐aligned rectangle. This allows us to sample according to the desired product distribution at an arbitrary shading location using a single (precomputed) summed‐area table per portal. Our technique is unbiased, relevant to many renderers, and can also be applied to rectangular light sources with directional emission profiles, enabling efficient rendering of non‐diffuse light sources with soft shadows.  相似文献   
62.
We present an example‐based approach for radiometrically linearizing photographs that takes as input a radiometrically linear exemplar image and a target regular uncalibrated image of the same scene, possibly from a different viewpoint and/or under different lighting. The output of our method is a radiometrically linearized version of the target image. Modeling the change in appearance of a small image patch seen from a different viewpoint and/or under different lighting as a linear 1D subspace, allows us to recast radiometric transfer in a form similar to classic radiometric calibration from exposure stacks. The resulting radiometric transfer method is lightweight and easy to implement. We demonstrate the accuracy and validity of our method on a variety of scenes.  相似文献   
63.
Renderings of animation sequences with physics‐based Monte Carlo light transport simulations are exceedingly costly to generate frame‐by‐frame, yet much of this computation is highly redundant due to the strong coherence in space, time and among samples. A promising approach pursued in prior work entails subsampling the sequence in space, time, and number of samples, followed by image‐based spatio‐temporal upsampling and denoising. These methods can provide significant performance gains, though major issues remain: firstly, in a multiple scattering simulation, the final pixel color is the composite of many different light transport phenomena, and this conflicting information causes artifacts in image‐based methods. Secondly, motion vectors are needed to establish correspondence between the pixels in different frames, but it is unclear how to obtain them for most kinds of light paths (e.g. an object seen through a curved glass panel). To reduce these ambiguities, we propose a general decomposition framework, where the final pixel color is separated into components corresponding to disjoint subsets of the space of light paths. Each component is accompanied by motion vectors and other auxiliary features such as reflectance and surface normals. The motion vectors of specular paths are computed using a temporal extension of manifold exploration and the remaining components use a specialized variant of optical flow. Our experiments show that this decomposition leads to significant improvements in three image‐based applications: denoising, spatial upsampling, and temporal interpolation.  相似文献   
64.
65.
66.
67.
QuadriFlow is a scalable algorithm for generating quadrilateral surface meshes based on the Instant Field‐Aligned Meshes of Jakob et al. (ACM Trans. Graph. 34(6):189, 2015). We modify the original algorithm such that it efficiently produces meshes with many fewer singularities. Singularities in quadrilateral meshes cause problems for many applications, including parametrization and rendering with Catmull‐Clark subdivision surfaces. Singularities can rarely be entirely eliminated, but it is possible to keep their number small. Local optimization algorithms usually produce meshes with many singularities, whereas the best algorithms tend to require non‐local optimization, and therefore are slow. We propose an efficient method to minimize singularities by combining the Instant Meshes objective with a system of linear and quadratic constraints. These constraints are enforced by solving a global minimum‐cost network flow problem and local boolean satisfiability problems. We have verified the robustness and efficiency of our method on a subset of ShapeNet comprising 17,791 3D objects in the wild. Our evaluation shows that the quality of the quadrangulations generated by our method is as good as, if not better than, those from other methods, achieving about four times fewer singularities than Instant Meshes. Other algorithms that produce similarly few singularities are much slower; we take less than ten seconds to process each model. Our source code is publicly available.  相似文献   
68.
Conformal parameterizations over the sphere provide high‐quality maps between genus zero surfaces, and are essential for applications such as data transfer and comparative shape analysis. However, such maps are not unique: to define correspondence between two surfaces, one must find the Möbius transformation that best aligns two parameterizations—akin to picking a translation and rotation in rigid registration problems. We describe a simple procedure that canonically centers and rotationally aligns two spherical maps. Centering is implemented via elementary operations on triangle meshes in ?3, and minimizes area distortion. Alignment is achieved using the FFT over the group of rotations. We examine this procedure in the context of spherical conformal parameterization, orbifold maps, non‐rigid symmetry detection, and dense point‐to‐point surface correspondence.  相似文献   
69.
    
Real‐time volume data acquisition poses substantial challenges for the traditional visualization pipeline where data enhancement is typically seen as a pre‐processing step. In the case of 4D ultrasound data, for instance, costly processing operations to reduce noise and to remove artefacts need to be executed for every frame. To enable the use of high‐quality filtering operations in such scenarios, we propose an output‐sensitive approach to the visualization of streaming volume data. Our method evaluates the potential contribution of all voxels to the final image, allowing us to skip expensive processing operations that have little or no effect on the visualization. As filtering operations modify the data values which may affect the visibility, our main contribution is a fast scheme to predict their maximum effect on the final image. Our approach prioritizes filtering of voxels with high contribution to the final visualization based on a maximal permissible error per pixel. With zero permissible error, the optimized filtering will yield a result that is identical to filtering of the entire volume. We provide a thorough technical evaluation of the approach and demonstrate it on several typical scenarios that require on‐the‐fly processing.  相似文献   
70.
    
This paper explores constrained convex space partition (CCSP) as a new acceleration structure for ray tracing. A CCSP is a graph, representing a space partition made up of empty convex volumes. The scene geometry is located on the boundary of the convex volumes. Therefore, each empty volume is bounded with two kinds of faces: occlusive ones (belonging to the scene geometry), and non‐occlusive ones. Given a ray, ray casting is performed by traversing the CCSP one volume at a time, until it hits the scene geometry. In this paper, this idea is applied to architectural scenes. We show that CCSP allows to cast several hundreds of millions of rays per second, even if they are not spatially coherent. Experiments are performed for large furnished buildings made up of hundreds of millions of polygons and containing thousands of light sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号