首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2345篇
  免费   100篇
  国内免费   108篇
电工技术   19篇
综合类   50篇
化学工业   597篇
金属工艺   218篇
机械仪表   540篇
建筑科学   14篇
矿业工程   11篇
能源动力   43篇
轻工业   102篇
石油天然气   26篇
武器工业   1篇
无线电   289篇
一般工业技术   555篇
冶金工业   9篇
原子能技术   33篇
自动化技术   46篇
  2024年   7篇
  2023年   8篇
  2022年   28篇
  2021年   30篇
  2020年   29篇
  2019年   37篇
  2018年   31篇
  2017年   47篇
  2016年   70篇
  2015年   67篇
  2014年   94篇
  2013年   184篇
  2012年   133篇
  2011年   209篇
  2010年   148篇
  2009年   196篇
  2008年   221篇
  2007年   177篇
  2006年   201篇
  2005年   126篇
  2004年   114篇
  2003年   106篇
  2002年   70篇
  2001年   51篇
  2000年   42篇
  1999年   50篇
  1998年   21篇
  1997年   14篇
  1996年   15篇
  1995年   13篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1988年   2篇
排序方式: 共有2553条查询结果,搜索用时 15 毫秒
81.
原子力显微镜主要用来表征样品的表面结构与形貌,操作容易、简便,分辨能力可达到纳米级别,是目前对材料分析与纳米科技研究的重要工具之一.以聚合物的支化结构、聚氨酯的微相分离结构、聚合物的结晶熔融行为和流延法单向拉伸制备高密度聚乙烯微孔膜4个实验为例,将原子力显微镜运用于高分子物理实验教学中,以更好地阐明聚合物结构与性能之间的关系,使学生可以更好地理解相关高分子物理的基本概念和理论,同时使他们分析和解决问题的能力得到提升.  相似文献   
82.
退火工艺对钛酸锶钡薄膜结构的影响   总被引:4,自引:0,他引:4  
采用射频磁控溅射在Pt/Ti/SiO2/Si(100)衬底上制备Ba0.6Sr0.4TiO3(BST)铁电薄膜,在500~750℃之间对薄膜快速退火。XRD分析表明:500℃时BST薄膜开始晶化为ABO3型钙钛矿结构,温度越高结晶越完整,晶粒越大。理论计算表明,薄膜在低温退火后无择优取向,高温退火后在(111)、(210)晶面有择优取向。退火气氛、保温时间、循环次数等因素对薄膜晶粒大小无明显影响,但对表面粗糙度和结晶程度影响较大。  相似文献   
83.
Fluorinated polyurethane dispersions (FPUDs) were synthesized using HDI isocyanurate, polyester polyol and DMPA with varying concentrations of trifluoro ethanol (TFE) in the range of 0–9 wt%. Further FPUDs were characterized by FT-IR and 1H NMR for structural elucidation. Effects of trifluoro ethanol on the dispersion were evaluated by particle size analyzer. It was observed that with increase in TFE, particle size increases. Topography and contact angle were studied by atomic force microscopy (AFM) and goniometer, respectively. To gain more insight into the formation of roughness, power spectral density (PSD) analysis was carried out. It was found that with increase in TFE content, surface roughness increases due to migration of fluorinating agent on the coating substrate and consequently water repellency increases. Nano indentation of coating revealed that fluorinated coating possesses less stiffness and elastic modulus, due to the presence of fluorine on the coating. Further, coatings were analyzed for thermal properties by thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) which shows the enhancement in thermal stability and glass transition temperature with increase in TFE content. Anti-graffiti test was carried out which showed improved resistance with increasing fluorine content.  相似文献   
84.
Conducting polypyrrole (PPy) thin-film electrodes were prepared by the electropolymerization of pyrrole on gold-coated glass plates. Films of various roughnesses were obtained by the variation of the scan rates during electropolymerization. These thin films were modified by doping with 6mM of the dopant NiCl2. The surface morphology of the films was studied by scanning electron microscopy and atomic force microscopy (AFM), which suggested films prepared with a high scan rate were rougher in nature than the films produced with a low scan rate. The electrocatalytic reduction of nitrobenzene was carried out with these electrodes with the cyclic voltammetry technique in acetonitrile containing 0.1M HClO4 as a supporting electrolyte. The various results obtained show that the conducting PPy thin-film electrodes were catalytically active toward the electroreduction process. The modified PPy film electrodes doped with NiCl2 were more active toward nitrobenzene electroreduction than the PPy film alone. The results indicate that the roughness of the films played a very important role in determining their catalytic activity. The PPy films that were more rough in nature were catalytically more active than the smooth films; this may have been due to the availability of more reactive sites in the case of rough films. The apparent diffusion coefficients of the PPy film electrodes were also calculated. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
85.
An environment friendly inhibitor, chitosan thiophene carboxaldehyde Schiff base, was synthesized by a condensation reaction of the carbonyl group of thiophene 2‐carboxaldehyde and free amino groups of chitosan. The chitosan Schiff base was characterized by UV spectroscopy, Fourier transform IR spectroscopy, elemental analysis and thermal analysis. The surface morphology of the Schiff base derivative was examined by SEM. Gravimetric and electrochemical techniques were used to explore the behaviour of the chitosan thiophene derivative as a corrosion inhibitor for mild steel in an acidic environment. The effects of inhibitor concentration, exposure time and temperature were investigated. The chitosan Schiff base showed a good inhibition performance of 92% inhibition efficiency at room temperature for 12 h of immersion in a weight loss experiment. The electrochemical results showed that the chitosan derivative acts as an effective mixed type inhibitor. The adsorption of the inhibitor followed the Temkin isotherm model. SEM and AFM techniques were used to characterize the protective layer formed on the mild steel substrate. © 2016 Society of Chemical Industry  相似文献   
86.
A protective film has been formed on the surface of carbon steel in aqueous environment using a synergistic mixture of an environment-friendly inhibitor, aspartic acid, and Zn2+. The synergistic effect of aspartic acid (AS) in controlling corrosion of carbon steel has been investigated by gravimetric studies in the presence of Zn2+. The formulation consisting of AS and Zn2+ has an excellent inhibition efficiency. The results of potentiodynamic polarization revealed that the formulations are of mixed-type inhibitor. Impedance studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of carbon steel in the aqueous environment. X-ray photoelectron spectroscopic analysis of the protective film showed the presence of the elements iron, nitrogen, oxygen, carbon, and zinc. The spectra of these elements in the surface film showed the presence of oxides/hydroxides of iron(III), Zn(OH)2, and [Fe(III)/Fe(II)–Zn(II)-AS] complex. Further, surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy are used to ascertain the nature of the protective film formed on the carbon steel surface.  相似文献   
87.
Purpose: The aim of the present investigation is to evaluate the corrosion inhibiting properties of four novel synthesize compounds namely N1,N1′-(1,4-phenylene)bis(N4-(4-nitrobenzylidene)benzene-1,4-diamine) SB-I, N1,N1′-(1,4-phenylene)bis(N4-benzylidenebenzene-1,4-diamine) SB-II, N1,N1′-(1,4-phenylene)bis(N4-(4-methylbenzylidene)benzene-1,4-diamine) SB-III, N1,N1′-(1,4-phenylene)bis(N4-(4-methoxybenzylidene)benzene-1,4-diamine) SB-IV for mild steel in 1 M HCl. Corrosion inhibitors find wide application in industries during pickling of steel, descaling and oil well acidization. Inhibitors have attracted great attention due to cost effectiveness and simplicity of the methods. Method: Different experimental techniques such as weight loss, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to evaluate the corrosion inhibition performance of SBs for mild steel in acid solution. After the corrosion experiments, the surface morphology of metal surface in the absence and presence of SBs were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM). Findings: The corrosion inhibition efficiency of SBs for mild steel are 71.42% (SB-I), 89.52 (SB-II), 92.85 (SB-III), 96.19 (SB-IV). Tafel polarization revealed that all the SBs behaved as mixed-type inhibitor but predominantly of cathodic type. The inhibition actions of these Schiff base molecules blocked the electrode surface by means of adsorption of the inhibitor molecule on metal surface, obeying the Langmuir adsorption isotherm. SEM/AFM studies of the metal surfaces confirm the protection of metal surface in presence of inhibitor as compared to the damaged surface in blank acid solution.  相似文献   
88.
Flotation recovery and selectivity problems have been reported in the flotation of fine sulphide minerals in gypsum supersaturated process water. In this study, the effect of gypsum supersaturated solution on the interactions between silica and sphalerite (ZnS) minerals was examined by observing deposition behaviour of silica nanoparticles on sphalerite surface using a quartz crystal microbalance with dissipation (QCM-D). Significant deposition of silica nanoparticles on ZnS coated sensor surface was observed in the gypsum supersaturated solution, indicating consequential slime coating of silica fines on sphalerite mineral surface. Substantial deposition of silica nanoparticles on SiO2 coated surface was also observed suggesting strong homo-aggregation of silica fines in the gypsum supersaturated solution. The interaction behaviour between silica–sphalerite and silica–silica is mainly attributed to the high calcium concentration of the gypsum supersaturated solution. Similar deposition behaviour of silica nanoparticles onto ZnS or SiO2 coated sensor surface was observed in 800 ppm calcium solution, which is similar to the calcium concentration of the gypsum supersaturated solution. Colloidal force measurement between a silica particle and a fractured sphalerite surface or a silica wafer surface by an atomic force microscopy (AFM) revealed attractive van der Waals force between the mineral particles in both gypsum supersaturated solution and 800 ppm calcium solution. The high calcium concentration of the gypsum supersaturated solution induced the hetero-aggregation between silica and sphalerite, accounting for the observed decrease in flotation selectivity.  相似文献   
89.
Methacrylamide was grafted on to poly (isophthalamide) (PIPA-g-MAA) to improve its solubility and hydrophilicity. Then, PIPA-g-MAA incorporated high performance cellulose acetate ultrafiltration (CA) membranes were prepared by phase inversion technique and physical properties of the membranes were studied by various analytical methods. The efficiency of these membranes in the removal of arsenic from aqueous stream was studied and an effort has been taken to correlate the separation efficiency with morphology. Overall results suggest that membrane hydrophilicity, structure and performance were improved significantly by the addition of PIPA-g-MAA. Thus PIPA-g-MAA can be considered as an effective modification agent for CA membranes.  相似文献   
90.
The crystalline structure and surface morphology of gold nano-structures prepared by sputtering on a glass substrate are studied. The properties of the gold nano-structures were determined at room temperature and after annealing at 300 °C. XRD analysis provided information about the gold crystalline structure. Significant difference in the dependence of the lattice parameter on the sputtering time was found between the as-sputtered and annealed samples. By the XRD method the texture, crystallite size and lattice stress were also determined. With increasing sputtering time the layer thickness and the size of crystallites increased. Another rapid enlargement of the crystallites is observed after annealing. On the as-sputtered samples the value of micro-deformation depends on the structure thickness. After annealing, however, the micro-deformation is nearly constant regardless of the sputtering time. On both, the as-sputtered and the annealed samples the gold crystallites are preferentially [111] oriented. After the annealing significant changes in the structure surface morphology and a dramatic increase of the surface roughness are observed due to a structure relaxation at increased temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号