首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   747篇
  免费   26篇
  国内免费   6篇
电工技术   1篇
综合类   13篇
化学工业   111篇
金属工艺   7篇
机械仪表   38篇
建筑科学   211篇
矿业工程   77篇
能源动力   9篇
轻工业   90篇
水利工程   5篇
石油天然气   3篇
无线电   23篇
一般工业技术   71篇
冶金工业   99篇
原子能技术   11篇
自动化技术   10篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   8篇
  2019年   8篇
  2018年   11篇
  2017年   14篇
  2016年   15篇
  2015年   11篇
  2014年   25篇
  2013年   33篇
  2012年   37篇
  2011年   79篇
  2010年   79篇
  2009年   80篇
  2008年   59篇
  2007年   54篇
  2006年   26篇
  2005年   32篇
  2004年   33篇
  2003年   26篇
  2002年   22篇
  2001年   17篇
  2000年   12篇
  1999年   19篇
  1998年   16篇
  1997年   11篇
  1996年   7篇
  1995年   7篇
  1993年   8篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1983年   2篇
  1981年   1篇
排序方式: 共有779条查询结果,搜索用时 15 毫秒
71.
Lipids encompass a myriad of natural compounds with many essential biological functions and applications across the areas of food and nutrition, health and medicine, and modern nanotechnologies. Arsenic has long been known as a highly toxic element. What happens when the two come together?  相似文献   
72.
This study investigates the adsorption of As(III) on β-cyclodextrin modified hydrous ferric oxide (HCC). This is characterized by XRD, FESEM, AFM, XPS, BET, surface site concentration and FTIR. The modification of hydrous ferric oxide (HFO) surface by β-cyclodextrin provides ample OH groups which in turn increase As(III) adsorption on HCC compared to HFO. The adsorption remains almost constant in pH range 3–8 which decreases at higher pH (>8) and followed monolayer and pseudo first order kinetics. It is spontaneous at 303 K with increasing entropy and decreasing enthalpy. Thus HCC is found to be more efficient adsorbent than HFO.  相似文献   
73.
Arsenic removal from water was investigated using activated carbon. The chemical activated carbon (CAC) prepared using H3PO4 from jute stick largely featured micropore structure with surface functional groups, while meso- and macropore structures were mainly developed in physical activated carbon (PAC). The CAC and PAC reduced arsenic concentration to 45 and 55 μg L−1, respectively, from 100 μg L−1 while iron-loaded CAC reduced to 3 μg L−1, which is lower than the upper permissible limit (10 μg L−1). The micropore structure of CAC along with complexation affinity of iron species towards arsenic species attributed to enhanced separation of arsenic.  相似文献   
74.
Uncontaminated and As-contaminated fronds of Pteris vittata L., an As-hyperaccumulator fern used to phytoextract As from contaminated soils and water, were converted by sub-critical water (300 °C, 25 Pa) and supercritical water (400 °C, 25 Pa) treatments. Frond biomass was reduced between 70 and 77%. Compared to sub-critical conditions, supercritical conditions decreased C and inorganic contents in both the solid and liquid phases for uncontaminated and contaminated fronds and promoted CH4 formation. Higher As, Fe and Zn contents in contaminated fronds promoted decreasing C contents and the formations of cyclopentenones and benzenediols in the liquid phase. Al, Fe, P, Zn and Ca mainly remained in the solid phase whereas As and S were transferred to the liquid phase for both phytomasses. As the temperature increased from 300 °C to 400 °C, the concentrations of cyclopentenones and phenols in the liquid phase rose while those of guaiacols and other compounds decreased for both phytomasses. Arsenic in the liquid phase was removed by sorption on hydrous iron oxide.  相似文献   
75.
A conceptual study has been carried out to convert geothermal water and condensate into a valuable industrial, agricultural or drinking water resource. Laboratory and field pilot test studies were used for the conceptual designs and preliminary cost estimates, referred to treatment facilities handling 750 kg/s of geothermal water and 350 kg/s of steam condensate. The experiments demonstrated that industrial, agricultural and drinking water standards could probably be met by adopting certain operating conditions. Six different treatments were examined. Unit processes for geothermal water/condensate treatment include desilication of the waters to produce marketable minerals, removal of dissolved solids by reverse osmosis or evaporation, removal of arsenic by oxidation/precipitation, and removal of boron by various methods including ion exchange. The total project cost estimates, with an accuracy of approximately ±25%, ranged from US$ 10 to 78 million in capital cost, with an operation and maintenance (or product) cost ranging from US$ 0.15 to 2.73 m−3 of treated water.  相似文献   
76.
77.
Novel nanocomposite materials where iron nanoparticles are embedded into the walls of a macroporous polymer were produced and their efficiency for the removal of As(III) from aqueous media was studied. Nanocomposite gels containing α-Fe2O3 and Fe3O4 nanoparticles were prepared by cryopolymerisation resulting in a monolithic structure with large interconnected pores up to 100 μm in diameter and possessing a high permeability (ca. 3 × 10−3 m s−1). The nanocomposite devices showed excellent capability for the removal of trace concentrations of As(III) from solution, with a total capacity of up to 3 mg As/g of nanoparticles. The leaching of iron was minimal and the device could operate in a pH range 3-9 without diminishing removal efficiency. The effect of competing ions such as SO42− and PO43− was negligible. The macroporous composites can be easily configured into a variety of shapes and structures and the polymer matrix can be selected from a variety of monomers, offering high potential as flexible metal cation remediation devices.  相似文献   
78.
Bioaccessibility, the fraction of an element solubilized during gastrointestinal digestion and available for absorption, is a factor that should be considered when evaluating the health risk of contaminants from food. Static and dynamic models that mimic human physiological conditions have been used to evaluate bioaccessibility. This preliminary study compares the bioaccessibility of arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) in two food certified reference materials (CRMs) (seaweed: Fucus sp., IAEA-140/TM; Lobster hepatopancreas: TORT-2), using two in vitro gastrointestinal digestion methods: a static method (SM) and a dynamic multicompartment method (TIM-1). There are significant differences (p < 0.05) between the bioaccessible values of As, Cd, Pb and Hg obtained by SM and TIM-1 in the two CRMs. The specific form in which the elements studied are present in the CRM may help to explain the bioaccessibility values obtained.  相似文献   
79.
Dhoble RM  Lunge S  Bhole AG  Rayalu S 《Water research》2011,45(16):4769-4781
Magnetic binary oxide particles (MBOP) synthesized using chitosan template has been investigated for uptake capacity of arsenic (III). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherm and also effect of various rate limiting factors including adsorbent dose, pH, optimum contact time, initial adsorbate concentration and influence of presence cations and anions. It was observed that uptake of arsenic (III) was independent of pH of the solution. Maximum adsorption of arsenic (III) was ∼99% at pH 7.0 with dose of adsorbent 1 g/L and initial As (III) concentration of 1.0 mg/L at optimal contact time of 14 h. The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherm. The maximum adsorption capacity of adsorbent was 16.94 mg/g. With increase in concentration of Ca2+, Mg2+ from 50 mg/L to 600 mg/L, adsorption of As (III) was significantly reduced while for Fe3+ the adsorption of arsenic (III) was increased with increase in concentration. Temperature study was carried out at 293 K, 303 K and 313 K reveals that the adsorption process is exothermic nature. A distinct advantage of this adsorbent is that adsorbent can readily be isolated from sample solutions by application of an external magnetic field. Saturation magnetization is a key factor for successful magnetic separation was observed to be 18.78 emu/g which is sufficient for separation by conventional magnate.  相似文献   
80.
Arsenic shares many physicochemical properties with phosphorus, so that arsenic can be taken up inadvertently by cells through the pathways for phosphorus. As a phosphate analog, arsenate competes with phosphate and enters cells via phosphate transporters. In the cell, arsenate can be recognized as a substrate by enzymes that usually use phosphate as a substrate. The phosphate for arsenate swap results in wasteful ‘futile cycles’ in metabolic pathways, uncoupled oxidative phosphorylation and extreme DNA instability. The disrupting metabolic effects of arsenic have an evolutionary meaning, so that all living organisms—from chemoautotrophic organisms that grow by reducing or oxidizing arsenic to metazoan—carry highly conserved arsenic resistance genes. Arsenic resistance can result from different strategies including selective transport to maximize phosphate uptake and minimize entry of arsenate, active transport to export arsenate, arsenic storage in specialized compartments, enzyme selectivity toward phosphate, and increased efficiency of DNA repair systems. None of these strategies is infallible, though, and susceptibility to arsenic toxicity varies between taxa in many orders of magnitude. Even arsenic-hypertolerant organisms will stop to grow and will eventually die when exposed to arsenic over species-specific resistance limits. The arsenic for phosphorus swap is an accidental one, it does not warrant a conclusion in favor of the essentiality of arsenic to life as we know it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号