首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1215篇
  免费   109篇
  国内免费   94篇
电工技术   28篇
综合类   44篇
化学工业   213篇
金属工艺   73篇
机械仪表   76篇
建筑科学   15篇
矿业工程   13篇
能源动力   57篇
轻工业   119篇
水利工程   1篇
石油天然气   19篇
无线电   347篇
一般工业技术   268篇
冶金工业   23篇
原子能技术   56篇
自动化技术   66篇
  2024年   7篇
  2023年   22篇
  2022年   46篇
  2021年   53篇
  2020年   50篇
  2019年   43篇
  2018年   23篇
  2017年   38篇
  2016年   43篇
  2015年   46篇
  2014年   60篇
  2013年   73篇
  2012年   64篇
  2011年   77篇
  2010年   64篇
  2009年   37篇
  2008年   63篇
  2007年   49篇
  2006年   59篇
  2005年   43篇
  2004年   48篇
  2003年   41篇
  2002年   36篇
  2001年   33篇
  2000年   27篇
  1999年   21篇
  1998年   38篇
  1997年   28篇
  1996年   23篇
  1995年   26篇
  1994年   21篇
  1993年   21篇
  1992年   11篇
  1991年   11篇
  1990年   9篇
  1989年   9篇
  1988年   9篇
  1987年   9篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   5篇
排序方式: 共有1418条查询结果,搜索用时 15 毫秒
991.
Perovskite solar cells with all‐organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high‐temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron‐transporting layer of inverted perovskite cells affects the open‐circuit voltage (VOC). It is shown that nonradiative recombination mediated by the electron‐transporting layer is the limiting factor for the VOC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a VOC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge‐blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency.  相似文献   
992.
Perovskite solar cells (PSCs) based on cesium (Cs)‐ and rubidium (Rb)‐containing perovskite films show highly reproducible performance; however, a fundamental understanding of these systems is still emerging. Herein, this study has systematically investigated the role of Cs and Rb cations in complete devices by examining the transport and recombination processes using current–voltage characteristics and impedance spectroscopy in the dark. As the credibility of these measurements depends on the performance of devices, this study has chosen two different PSCs, (MAFACs)Pb(IBr)3 (MA = CH3NH3+, FA = CH(NH2)2+) and (MAFACsRb)Pb(IBr)3, yielding impressive performances of 19.5% and 21.1%, respectively. From detailed studies, this study surmises that the confluence of the low trap‐assisted charge‐carrier recombination, low resistance offered to holes at the perovskite/2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spirobifluorene interface with a low series resistance (Rs), and low capacitance leads to the realization of higher performance when an extra Rb cation is incorporated into the absorber films. This study provides a thorough understanding of the impact of inorganic cations on the properties and performance of highly efficient devices, and also highlights new strategies to fabricate efficient multiple‐cation‐based PSCs.  相似文献   
993.
Halide perovskites (ABX3) have emerged as promising materials in the past decade owing to their superior photophysical properties, rendering them potential candidates as solar cells, light‐emitting diode displays, and lasing materials. To optimize their utilization into optoelectronic devices, fundamental understanding of the optical behaviors is necessary. To reveal the comprehensive structure–property relationship, CH3NH3PbBr3 (MAPbBr3) perovskite quantum dots (PQDs) of three different sizes are prepared by controlling the precipitation temperature. Photoluminescence (PL) blinking, a key process that governs the emission efficiency of the PQD materials, is investigated in detail by the time‐resolved spectroscopic measurements of individual dots. The nature of the generated species in the course of blinking events is identified, and the mechanism governing the PL blinking is studied as a function of PQD sizes. Further, the practical applicability of MAPbBr3 PQDs is assessed by studying the multiexciton dynamics under high photoexcitation intensity under which most of the display devices work. Ultrafast transient absorption spectroscopy helped in uncovering the volume‐dependent Auger recombination rates, which are further explored by comparing the early‐time transitions related to surface trap states and higher band states.  相似文献   
994.
In this article it is investigated how the hole extraction layer (HEL) influence the charge recombination and performance in half tin and half lead (FASn0.5Pb0.5I3) based solar cells (HPSCs). FASn0.5Pb0.5I3 film grown on PEDOT:PSS displays a large number of pin‐holes and open grain boundaries, resulting in a high defect density and shunts in the perovskite film causing significant bulk and interfacial charge recombination in the HPSCs. By contrast, FASn0.5Pb0.5I3 films grown on PCP‐Na, an anionic conjugated polymer, show compact and pin‐hole free morphology over a large area, which effectively eliminates the shunts and trap states. Moreover, PCP‐Na is characterized by a higher work function, which determines a favorable energy alignment at the anode interface, enhancing the charge extraction. Consequently, both the interfacial and bulk charge recombination in devices using PCP‐Na HEL are considerably reduced giving rise to an overall improvement of all the device parameters. The HPSCs fabricated with this HEL display power conversion efficiency up to 16.27%, which is 40% higher than the efficiency of the control devices using PEDOT:PSS HEL (11.60%). Furthermore, PCP‐Na as HEL offers superior performance in larger area devices compared to PEDOT:PSS.  相似文献   
995.
Most long‐persistent luminescent (LPL) materials, which slowly release energy absorbed from ambient light, are based on inorganic compounds. Organic long‐persistent luminescent (OLPL) systems have advantages over inorganic LPL materials in terms of solubility, transparency, and flexibility. Here, the characteristics of OLPL emission are improved by doping emitter molecules into an OLPL matrix. Greenish‐blue to red and even warm white emission are achieved by energy transfer from exciplex in the OLPL matrix to the emitter dopants. The dopants also improve brightness and emission duration through efficient radiative decay and the trapping of electrons, respectively. This technique will enable the development of a wide range of organic glow‐in‐the‐dark paints.  相似文献   
996.
Metal halide perovskites (MHPs) have recently attracted great attention from the scientific community due to their excellent photovoltaic performance as well as their tremendous potential for other optoelectronic applications such as light‐emitting diodes, lasers, and photodetectors. Despite the rapid progress in device applications, a solid understanding of the photophysical properties behind the device performance is highly desirable for MHPs. Here, the properties of excitons and photogenerated charge carriers in MHPs are explored. The unique dielectric constant properties, crystal–liquid duality, and fundamental optical processes of MHPs are first discussed. The properties of excitons and related phenomena in MHPs are then detailed, including the exciton binding energy determined by various methods and their influence factors, exciton dynamics, exciton–photon coupling and related applications, and exciton–phonon coupling in MHPs. The properties of photogenerated free charge carriers in MHPs such as the carrier diffusion length, mobility, and recombination are described. Recent progress in various applications is also demonstrated. Finally, a conclusion and perspectives of future studies for MHPs are presented.  相似文献   
997.
Perovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their VOC to values well below the Shockley–Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi‐Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the VOC of operational devices. These measurements prove that in state‐of‐the‐art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump‐probe techniques give complementary access to the interfacial recombination pathways and provide quantitative information on transfer rates and recombination velocities. Promising optimization strategies are also highlighted, in particular in view of the role of energy level alignment and the importance of surface passivation. Recent record perovskite solar cells with low nonradiative losses are presented where interfacial recombination is effectively overcome—paving the way to the thermodynamic efficiency limit.  相似文献   
998.
ABSTRACT

This paper deals with the role of the State Owned enterprises (SOEs) in innovation processes. Only a few studies focus on the contribution SOEs as companies might give to produce new knowledge and technological innovation. We argue, however, that SOEs are a pillar of the innovation process and we explore conditions that can make SOEs very effective. Through two in-depth case studies in two different industries (STMicroelectronics in the semiconductor and Thales Alenia Space in the space industry) we illustrate how SOEs can contribute to innovation by exploring new opportunities and recombining different sources of knowledge. We highlight the conditions that can make exploration and recombination possible. We also highlight the ability of the two companies to change their boundaries through a continuous wave of agreements, mergers and acquisitions. This way, they were able to expand beyond their domains in a way that matched the evolution of their original industries.  相似文献   
999.
The measurements of the response—in terms of the conductance changes—to oxygen adsorption of tin dioxide (SnO2) thin-film-based gas sensors were performed. The sensing SnO2 layers were obtained by means of the rheotaxial growth and thermal oxidation (RGTO) method. The sensor responses were measured under a dry gas flow containing oxygen in nitrogen, within the range of temperature from 25 to 540 °C. For comparison, similar studies were performed for a commercial SnO2 thick-film (TGS 812) gas sensor.The in-depth profiles of the chemical composition of the RGTO SnO2 layers were determined from the scanning Auger microprobe experiment. The changes in concentration ratios [O]/[Sn] and [C]/[Sn] from the near-surface region towards the grain bulk were shown.  相似文献   
1000.
高维平 《山西建筑》2007,33(3):187-188
通过大量实例对管理、人员、文化等非实物资产的重组进行深入分析,阐述了在企业重组中非实物资产重组的重要性,指出在当前我国产业结构调整和企业重组时期,在企业重组过程中既要注重实物性资产的重组,更不能忽视非实物性资产的重组。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号