首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1278篇
  免费   451篇
  国内免费   14篇
电工技术   99篇
综合类   28篇
化学工业   59篇
金属工艺   3篇
机械仪表   18篇
建筑科学   7篇
矿业工程   12篇
能源动力   116篇
轻工业   3篇
水利工程   5篇
石油天然气   8篇
武器工业   2篇
无线电   55篇
一般工业技术   13篇
冶金工业   7篇
原子能技术   1篇
自动化技术   1307篇
  2025年   2篇
  2024年   9篇
  2023年   104篇
  2022年   19篇
  2021年   9篇
  2020年   192篇
  2019年   190篇
  2018年   145篇
  2017年   153篇
  2016年   182篇
  2015年   158篇
  2014年   187篇
  2013年   24篇
  2012年   27篇
  2011年   58篇
  2010年   55篇
  2009年   48篇
  2008年   19篇
  2007年   29篇
  2006年   23篇
  2005年   35篇
  2004年   14篇
  2003年   18篇
  2002年   12篇
  2001年   4篇
  2000年   10篇
  1999年   4篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有1743条查询结果,搜索用时 0 毫秒
11.
Carbon capture and storage (CCS) is considered a leading technology for reducing CO2 emissions from fossil-fuelled electricity generation plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. However considerable energy is required for the capture, compression, transport and storage steps involved. In this paper, energy penalty information in the literature is reviewed, and thermodynamically ideal and “real world” energy penalty values are calculated. For a sub-critical pulverized coal (PC) plant, the energy penalty values for 100% capture are 48.6% and 43.5% for liquefied CO2, and for CO2 compressed to 11 MPa, respectively. When assumptions for supercritical plants were incorporated, results were in broad agreement with published values arising from process modelling. However, we show that energy use in existing capture operations is considerably greater than indicated by most projections. Full CCS demonstration plants are now required to verify modelled energy penalty values. However, it appears unlikely that CCS will deliver significant CO2 reductions in a timely fashion. In addition, many uncertainties remain over the permanence of CO2 storage, either in geological formations, or beneath the ocean. We conclude that further investment in CCS should be seriously questioned by policy makers.  相似文献   
12.
    
Research in the area of collision detection permeates most of the literature on simulations, interaction and agents planning, being commonly regarded as one of the main bottlenecks for large-scale systems. To this day, despite its importance, most subareas of collision detection lack a common ground to test and validate solutions, reference implementations and widely accepted benchmark suites. In this paper, we delve into the broad-phase of collision detection systems, providing both an open-source framework, named Broadmark, to test, compare and validate algorithms, and an in-deep analysis of the main techniques used so far to tackle the broad-phase problem. The technical challenges of building this framework from the software and hardware perspectives are also described. Within our framework, several original and state-of-the-art implementations of CPU and GPU algorithms are bundled, alongside three benchmark scenes to stress algorithms under several conditions. Furthermore, the system is designed to be easily extensible. We use our framework to bring out an extensive performance comparison among assembled solutions, detailing the current CPU and GPU state-of-the-art on a common ground. We believe that Broadmark encompasses the principal insights and tools to derive and evaluate novel algorithms, thus greatly facilitating discussion about successful broad-phase collision detection solutions.  相似文献   
13.
    
Automatic synthesis of realistic gestures promises to transform the fields of animation, avatars and communicative agents. In off-line applications, novel tools can alter the role of an animator to that of a director, who provides only high-level input for the desired animation; a learned network then translates these instructions into an appropriate sequence of body poses. In interactive scenarios, systems for generating natural animations on the fly are key to achieving believable and relatable characters. In this paper we address some of the core issues towards these ends. By adapting a deep learning-based motion synthesis method called MoGlow, we propose a new generative model for generating state-of-the-art realistic speech-driven gesticulation. Owing to the probabilistic nature of the approach, our model can produce a battery of different, yet plausible, gestures given the same input speech signal. Just like humans, this gives a rich natural variation of motion. We additionally demonstrate the ability to exert directorial control over the output style, such as gesture level, speed, symmetry and spacial extent. Such control can be leveraged to convey a desired character personality or mood. We achieve all this without any manual annotation of the data. User studies evaluating upper-body gesticulation confirm that the generated motions are natural and well match the input speech. Our method scores above all prior systems and baselines on these measures, and comes close to the ratings of the original recorded motions. We furthermore find that we can accurately control gesticulation styles without unnecessarily compromising perceived naturalness. Finally, we also demonstrate an application of the same method to full-body gesticulation, including the synthesis of stepping motion and stance.  相似文献   
14.
    
We present a simple, efficient and low-memory technique, targeting fast construction of bounding volume hierarchies (BVH) for broad-phase collision detection. To achieve this, we devise a novel representation of BVH trees in memory. We develop a mapping of the implicit index representation to compact memory locations, based on simple bit-shifts, to then construct and evaluate bounding volume test trees (BVTT) during collision detection with real-time performance. We model the topology of the BVH tree implicitly as binary encodings which allows us to determine the nodes missing from a complete binary tree using the binary representation of the number of missing nodes. The simplicity of our technique allows for fast hierarchy construction achieving over speedup over the state-of-the-art. Making use of these characteristics, we show that not only it is feasible to rebuild the BVH at every frame, but that using our technique, it is actually faster than refitting and more memory efficient.  相似文献   
15.
    
We present a highly efficient algorithm for computing the minimum distance between two solids of revolution, each of which is defined by a planar cross-section region and a rotation axis. The boundary profile curve for the cross-section is first approximated by a bounding volume hierarchy (BVH) of fat arcs. By rotating the fat arcs around the axis, we generate the BVH of fat tori that bounds the surface of revolution. The minimum distance between two solids of revolution is then computed very efficiently using the distance between fat tori, which can be boiled down to the minimum distance computation for circles in the three-dimensional space. Our circle-based approach to the solids of revolution has distinctive features of geometric simplification. The main advantage is in the effectiveness of our approach in handling the complex cases where the minimum distance is obtained in non-convex regions of the solids under consideration. Though we are dealing with a geometric problem for solids, the algorithm actually works in a computational style similar to that of handling planar curves. Compared with conventional BVH-based methods, our algorithm demonstrates outperformance in computing speed, often 10–100 times faster. Moreover, the minimum distance can be computed very efficiently for the solids of revolution under deformation, where the dynamic reconstruction of fat arcs dominates the overall computation time and takes a few milliseconds.  相似文献   
16.
    
This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly-shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re-use popular isotropic plasticity models like the Drucker-Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate.  相似文献   
17.
    
Voxels are a popular choice to encode complex geometry. Their regularity makes updates easy and enables random retrieval of values. The main limitation lies in the poor scaling with respect to resolution. Sparse voxel DAGs (Directed Acyclic Graphs) overcome this hurdle and offer high-resolution representations for real-time rendering but only handle static data. We introduce a novel data structure to enable interactive modifications of such compressed voxel geometry without requiring de- and recompression. Besides binary data to encode geometry, it also supports compressed attributes (e.g., color). We illustrate the usefulness of our representation via an interactive large-scale voxel editor (supporting carving, filling, copying, and painting).  相似文献   
18.
    
Modern acquisition techniques generate detailed point clouds that sample complex geometries. For instance, we are able to produce millimeter-scale acquisition of whole buildings. Processing and exploring geometrical information within such point clouds requires scalability, robustness to acquisition defects and the ability to model shapes at different scales. In this work, we propose a new representation that enriches point clouds with a multi-scale planar structure graph. We define the graph nodes as regions computed with planar segmentations at increasing scales and the graph edges connect regions that are similar across scales. Connected components of the graph define the planar structures present in the point cloud within a scale interval. For instance, with this information, any point is associated to one or several planar structures existing at different scales. We then use topological data analysis to filter the graph and provide the most prominent planar structures. Our representation naturally encodes a large range of information. We show how to efficiently extract geometrical details (e.g. tiles of a roof), arrangements of simple shapes (e.g. steps and mean ramp of a staircase), and large-scale planar proxies (e.g. walls of a building) and present several interactive tools to visualize, select and reconstruct planar primitives directly from raw point clouds. The effectiveness of our approach is demonstrated by an extensive evaluation on a variety of input data, as well as by comparing against state-of-the-art techniques and by showing applications to polygonal mesh reconstruction.  相似文献   
19.
    
We present a novel method to construct short cuts for parameterizations with low isometric distortion. The algorithm contains two steps: (i) detect feature points, where the distortion is usually concentrated; and (ii) construct a cut by connecting the detected feature points. Central to each step is a greedy method. After generating a redundant feature point set, a greedy filtering process is performed to identify the feature points required for low isometric distortion parameterizations. This filtering process discards the feature points that are useless for distortion reduction while still enabling us to obtain low isometric distortion. Next, we formulate the process of connecting the detected feature points as a Steiner tree problem. To find an approximate solution, we first successively and greedily produce a collection of auxiliary points. Then, a cut is constructed by connecting the feature points and auxiliary points. In the 26,299 test cases in which an exact solution to the Steiner tree problem is available, the length of the cut obtained by our method is on average 0.17% longer than optimal. Compared to state-of-the-art cut construction methods, our method is one order of magnitude faster and generates shorter cuts while achieving similar isometric distortion.  相似文献   
20.
    
We present RGB2AO, a novel task to generate ambient occlusion (AO) from a single RGB image instead of screen space buffers such as depth and normal. RGB2AO produces a new image filter that creates a non-directional shading effect that darkens enclosed and sheltered areas. RGB2AO aims to enhance two 2D image editing applications: image composition and geometry-aware contrast enhancement. We first collect a synthetic dataset consisting of pairs of RGB images and AO maps. Subsequently, we propose a model for RGB2AO by supervised learning of a convolutional neural network (CNN), considering 3D geometry of the input image. Experimental results quantitatively and qualitatively demonstrate the effectiveness of our model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号