排序方式: 共有58条查询结果,搜索用时 11 毫秒
41.
42.
A building-façade integrated concentrating photovoltaic-thermal system has been designed, constructed and experimentally characterised. Comparative performances with a non-concentration reference unit have been conducted to analyse the differential outputs. The concentrating system consists of double-side reflective strips which concentrate the incident beam towards a static photovoltaic-thermal receiver. The reflectors are placed vertically at the façade and track the sun by rotating axially. The concentrating reflector outperforms the reference one in both, thermal and electrical power. The thermal output of the concentration module almost doubles the reference one and the electrical power registered is more than 4.5 times in the case of the concentrating configuration. 相似文献
43.
P. Espinet I. GarcíaI. Rey-Stolle C. AlgoraM. Baudrit 《Solar Energy Materials & Solar Cells》2011,95(9):2693-2697
One of the key components of highly efficient multi-junction concentrator solar cells is the tunnel junction interconnection. In this paper, an improved 3D distributed model is presented that considers real operation regimes in a tunnel junction. This advanced model is able to accurately simulate the operation of the solar cell at high concentrations at which the photogenerated current surpasses the peak current of the tunnel junction. Simulations of dual-junction solar cells were carried out with the improved model to illustrate its capabilities and the results have been correlated with experimental data reported in the literature. These simulations show that, under certain circumstances, the solar cell's short circuit current may be slightly higher than the tunnel junction peak current without showing the characteristic dip in the J-V curve. This behavior is caused by the lateral current spreading toward dark regions, which occurs through the anode/p-barrier of the tunnel junction. 相似文献
44.
A coupled system is proposed, comprised of a concentrating photovoltaic/thermal collector field and a multi-effect evaporation desalination plant. The combined system produces solar electricity and simultaneously exploits the waste heat of the photovoltaic cells to desalinate water. A detailed simulation was performed to compute the annual production of electricity and water. The cost of desalinated water was estimated and compared to that of alternative conventional and solar desalination plants. Several economic scenarios were analyzed. The results indicate that the proposed coupled plant can have a significant advantage relative to other solar desalination approaches. In some cases, CPVT desalination is even more cost-effective than conventional desalination. 相似文献
45.
Quan-Sen Sun Author Vitae Zheng-dong Liu Author Vitae Author Vitae De-Sen Xia Author Vitae 《Pattern recognition》2005,38(3):449-452
This paper proposes a kind of generalized canonical projective vectors (GCPV), based on the framework of canonical correlation analysis (CCA) applying image recognition. Apart from canonical projective vectors (CPV), the process of obtaining GCPV contains the class information of samples, such that the combined features extracted according to the basis of GCPV can give a better classification performance. The experimental result based on the Concordia University CENPARMI handwritten Arabian numeral database has proved that our method is superior to the method based on CPV. 相似文献
46.
Andrea Antonini Maria A. Butturi Paolo Zurru 《Progress in Photovoltaics: Research and Applications》2015,23(11):1668-1677
The design of a specific low concentration photovoltaic module is described here, with a report of the results of the first experimental tests of its industrial version. The product is a 20× reflective concentrating photovoltaic module based on silicon solar cells. The optics were designed to mount these modules on 2‐axis trackers with angular pointing accuracy of up to about ±4° without significant power loss. The high angular acceptance of the non‐imaging optics permits the collection of a high fraction of the circumsolar light impinging on the module's frontal aperture, providing high direct normal irradiance efficiency in real operative conditions. Many technical features of the product are described here, in which features are the result of 5 years of product development in order to improve performance, reliability and cost issues. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
47.
Katsushi Fujii Shinichiro Nakamura Masakazu Sugiyama Kentaroh Watanabe Behgol Bagheri Yoshiaki Nakano 《International Journal of Hydrogen Energy》2013
Energy storage is a key technology for establishing a stand-alone renewable energy system. Current energy-storage technologies are, however, not suitable for such an energy system because the technologies are cost ineffective and achieve low energy-conversion efficiency. The most realistic and expected technology is hydrogen generation from water splitting by an electrochemical cell directly connected with photovoltaic cell. In this study, a simple concept is proposed for generating hydrogen from water splitting by using a direct-electrically-connected polymer electrolyte electrochemical cell and a separately-located concentrated photovoltaic cell, named a “concentrated photovoltaic electrochemical cell (CPEC)”. The CPEC operates stably and achieves relatively high-energy conversion efficiency from light to hydrogen of over 12%. The conditions are comparison with those of the electrochemical cell connected with a polycrystalline Si solar cell. 相似文献
48.
The concentrating photovoltaic (CPV) systems are a promising technology to obtain clean energy. However, these systems are not equally convenient worldwide due to different climatic conditions. The main aim of this paper is to analyze energy and economic performances of a point-focus CPV system for a residential user when its installation site varies. Three locations, Riyadh, Copenhagen, and Palermo, characterized by very different weather conditions are chosen. A model that links the electrical power of a triple-junction (TJ) cell with its temperature and concentrated radiation incident on it is experimentally developed to evaluate the energy performance of the CPV system. A comparison of the three localities for typical winter and summer sunny days indicates that the higher values of the TJ cell temperature are reached in summer, over 70°C at Riyadh, and its electrical power is reduced compared to a winter day. In winter, a TJ cell in Riyadh supplies an electric power of about 20% higher than that in other two cities, while in summer, the maximum power is observed at Copenhagen. On the contrary, the electrical producibility also depends on the sunlight daily hours number during the year. Hence, considering the real distribution of direct normal irradiance (DNI) and the environmental temperature for each locality, a CPV system composed of modules of 90 cells adopted for a residential user is sized. The electric producibility of the CPV system, by varying its module number, is evaluated for different localities together with the optimal number of the modules which is able to maximize the investment profitability. 相似文献
49.
Effect of acetylation,oxidation and annealing on physicochemical properties of bean starch 总被引:3,自引:0,他引:3
Black and Pinto bean starches were physically and chemically modified to investigate the effect of modification on digestibility and physicochemical properties of bean starch. The impact of acetylation, oxidation (ozonation) and annealing on the chemical composition, syneresis, swelling volume, pasting, thermal properties and digestibility of starches was evaluated. The physicochemical and estimated glycemic index (eGI) of the Black and Pinto bean starches treated with ozone were not significantly (P > 0.05) different than that of their respective control starches. Annealed starches had improved thermal and pasting properties compared to native starches. Acetylated starches presented reduced syneresis, good pasting properties and lower eGI. Also, all modified starches had increased levels of resistant starch (RS). Therefore, the digestibility and physicochemical properties of bean starch were affected by the type of modification but there were no significant (P > 0.05) differences between the Black and Pinto bean starches. 相似文献
50.
Gaeet AlFalah Taher S. Maatallah Mussad Alzahrani Fahd Ghallab Al-Amri 《国际能源研究杂志》2020,44(14):11852-11871
Nowadays, the most recent optical configuration based on Cassegrain and Fresnel lens designs of concentrator photovoltaic(CPV) has shown a race to achieve the ultrahigh concentration ratio. Still, none of those has experimentally shown an optical concentration ratio (GC) beyond 2000 suns. This is because their energy concentration ratios are challenged by the excessive temperature raised throughout the optical stages, which diminishes the efficiency of the solar cell. In this context, this research work aims to numerically investigate a microscale pin-fins heat sink configuration to enhance the thermal performance and the cost-competitivity of ultrahigh CPV thermal receiver. The impacts of the solar cell area, cell efficiency, and heat sink's material have been analyzed and discussed. The results showed that a circular pin-fins heat sink could accomplish a drop of 23.28% in the maximum operating cell temperature at 10 000 suns for cell area of 1 × 1 mm2 relatively compared to the conventional flat-plate heat sink. Furthermore, for a circular pin-fins heat sink with a cell area of 2 × 2 mm2, the cell temperature started exceeding the safe operating range of temperature (80°C) at 8000 suns with an average temperature of 96.1°C and reaching a maximum of 113.91°C at 10 000 suns. A gradient temperature on the planar direction of the aluminum circular pin-fins heat sink was about 1.187°C at 10 000 suns whereas 0.703°C was recorded in the case of a copper circular pin-fins heat sink. The circular pin-fins heat sink showed the highest thermal performance resulting in maintaining the solar cell temperature within its safe operating range even beyond 10 000 suns. From an economic point of view, aluminum circular pin-fins heat sink has been found to be less costly than the copper one. Finally, it was found that at 8000 suns, the flat-plate heat sink cost is more expensive than the traditional pin-fins heat sink by 14.7%, where the flat-plate heat sink becomes the worst economic configuration at 10 000 suns. At that concentration ratio, the cost has increased by 43.38%, 5.75%, and 10.61% compared to the traditional pin-fins heat sink, cylindrical pin-fins heat sink, and circular pin-fins heat sink, respectively. 相似文献