首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1126篇
  免费   150篇
  国内免费   136篇
电工技术   29篇
综合类   133篇
化学工业   149篇
金属工艺   7篇
机械仪表   33篇
建筑科学   194篇
矿业工程   91篇
能源动力   31篇
轻工业   7篇
水利工程   200篇
石油天然气   10篇
武器工业   2篇
无线电   51篇
一般工业技术   167篇
冶金工业   22篇
原子能技术   4篇
自动化技术   282篇
  2024年   5篇
  2023年   26篇
  2022年   47篇
  2021年   52篇
  2020年   58篇
  2019年   45篇
  2018年   35篇
  2017年   58篇
  2016年   44篇
  2015年   60篇
  2014年   73篇
  2013年   59篇
  2012年   67篇
  2011年   107篇
  2010年   91篇
  2009年   96篇
  2008年   95篇
  2007年   100篇
  2006年   71篇
  2005年   56篇
  2004年   51篇
  2003年   45篇
  2002年   25篇
  2001年   14篇
  2000年   11篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1991年   1篇
  1989年   2篇
  1986年   2篇
  1979年   2篇
排序方式: 共有1412条查询结果,搜索用时 15 毫秒
51.
黄土是一种水敏性颗粒材料,其强度受含水率影响十分明显。基于非饱和土力学的基本理论,利用颗粒离散元方法,建立了一种非饱和黄土的简化离散元模型。在对非饱和黄土的力学特性进行离散元模拟分析后,与室内三轴试验进行了对比验证。对比模型和试验结果发现:不同含水率试样的应力应变关系受土体颗粒间摩擦系数直接影响,表现为试样含水率越高,摩擦系数越小,说明该离散元模型在一定范围内能够反映重塑黄土的土力学特性。  相似文献   
52.
基于DEM和ETM的腾格里沙漠北缘沙丘形态特征提取   总被引:1,自引:0,他引:1  
本文以腾格里沙漠北缘为研究区,探索沙丘地貌形态提取方法的可行性研究。首先,利用分辨率30m的DEM数据派生出坡度和起伏度两个地形因子。依据坡度(3°)和起伏度(15m)的提取指标,按照形态特征初步判定沙地和沙丘地貌的边界线。其次,结合数学形态分析法,通过斑块指数值的大小初步确定复合流动沙丘的类型。最后,利用ETM影像的色调、纹理、结构等特征,并结合专家经验知识和野外实地观测,建立腾格里沙漠北缘沙丘地貌特征的遥感影像特征图谱,依据特征图谱进一步确定沙丘的类型。本次研究结果表明:DEM和ETM相结合的方法基本上实现了腾格里沙漠北缘的沙丘地貌形态的提取。提取出的沙丘形态主要有:新月形沙丘和沙丘链、线性沙丘,纵向沙垄、新月形沙垄、复合型沙丘及沙丘链、金字塔形沙丘及沙丘链。  相似文献   
53.
阐述了利用JX-4全数字摄影测量工作站制作3D产品的生产流程,并结合生产实践,对生产过程中的定向建模、矢量测图、DEM编辑与创建、DOM参数设置、数据导出等进行了讨论.  相似文献   
54.
随着原煤含水量的增加,引起原煤颗粒间相互粘聚,影响振动筛筛分效率。基于离散元法,运用EDEM软件模拟了潮湿原煤颗粒在圆形筛孔、方形筛孔和矩形筛孔的筛分过程,并且以筛分效率和阻碍粒排出率为衡量指标,对振动筛筛孔形状影响潮湿煤筛分效果进行了研究。结果表明:在筛孔名义尺寸相同的情况下,潮湿煤在矩形筛孔筛面上的筛分效果最好,方形筛孔次之,圆形筛孔最差。  相似文献   
55.
The discrete element method (DEM) has been extensively adopted to investigate many complex geotechnical related problems due to its capability to incorporate the discontinuous nature of granular materials. In particular, when simulating large deformations or distortion of soil (e.g. cavity expansion), DEM can be very effective as other numerical solutions may experience convergence problems. Cavity expansion theory has widespread applications in geotechnical engineering, particularly to the problems concerning in situ testing, pile installation and so forth. In addition, the behaviour of geomaterials in a macro-level is utterly determined by microscopic properties, highlighting the importance of contact models. Despite the fact that there are numerous contact models proposed to mimic the realistic behaviour of granular materials, there are lack of studies on the effects of these contact models on the soil response. Hence, in this study, a series of three-dimensional numerical simulations with different contact constitutive models was conducted to simulate the response of sandy soils during cylindrical cavity expansion. In this numerical investigation, three contact models, i.e. linear contact model, rolling resistance contact model, and Hertz contact model, are considered. It should be noted that the former two models are linear based models, providing linearly elastic and frictional plasticity behaviours, whereas the latter one consists of nonlinear formulation based on an approximation of the theory of Mindlin and Deresiewicz. To examine the effects of these contact models, several cylindrical cavities were created and expanded gradually from an initial radius of 0.055 m to a final radius of 0.1 m. The numerical predictions confirm that the calibrated contact models produced similar results regarding the variations of cavity pressure, radial stress, deviatoric stress, volumetric strain, as well as the soil radial displacement. However, the linear contact model may result in inaccurate predictions when highly angular soil particles are involved. In addition, considering the excessive soil displacement induced by the pile installation (i.e. cavity expansion), a minimum distance of 11a (a is the cavity radius) is recommend for practicing engineers to avoid the potential damages to the existing piles and adjacent structures.  相似文献   
56.
This paper presents a novel analytical solution for geotextile-wrapped soil based on a comprehensive numerical analysis conducted using the discrete element method (DEM). By examining the soil–geotextile interface friction, principal stress distribution, and stress–strain relations of the constituent soil and geotextile in the DEM analysis, a complete picture of the mechanical characterization of geotextile-wrapped soil under uniaxial compression is first provided. With these new insights, key assumptions are verified and developed for the proposed analytical solution. In the DEM analysis, a near-failure state line that predicts stress ratios relative to the maximums at failure with respect to deviatoric strain is uniquely identified; dilation rates are found to be related to stress ratios via a single linear correlation regardless of the tensile stiffness of the geotextile. From these new findings, the assumptions on the stress-state evolution and the stress–dilatancy relation are developed accordingly, and the wrapped granular soil can therefore be modeled as a Mohr–Coulomb elastoplastic solid with evolving stress ratio and dilation rate. The development of the proposed analytical model also demonstrates an innovative approach to take advantage of multiscale insights for the analytical modeling of complex geomaterials. The analytical model is validated with the DEM simulation results of geotextile-wrapped soil under uniaxial compression, considering a wide range of geotextile tensile stiffnesses. To further examine the predictive capacity of the analytical model, the stress–strain response under triaxial compression conditions is solved analytically, taking both different confining pressures and geotextile tensile stiffnesses into account. Good agreement is obtained between the analytical and DEM solutions, which suggests that the key assumptions developed in the uniaxial compression conditions also remain valid for triaxial compression conditions.  相似文献   
57.
All-solid-state batteries constitute a very promising energy storage device. Two very important properties of these battery cells are the ionic and the electrical conductivity, which describe the ion and the electron transport through the electrodes, respectively. In this work, a numerical method is presented to model the electrical conductivity, considering the outcome of discrete-element method simulations and the intrinsic conductivities of both the active material particles and the conductive additive particles. The results are calibrated and validated with the help of experimental data of real manufactured electrodes. The tortuosity, which strongly influences the ionic conductivity, is also presented for the analyzed electrodes, taking their microstructure into account.  相似文献   
58.
Discrete Element Method (DEM) has been used for numerical investigation of sintering-induced structural deformations occurring in inverse opal photonic structures. The influence of the initial arrangement of template particles on the stability of highly porous inverse opal α-Al2O3 structures has been analyzed. The material transport, densification, as well as formation of defects and cracks have been compared for various case studies. Three different stages of defects formation have been distinguished starting with local defects ending with intrapore cracks. The results show that the packing of the template particles defined during the template self-assembly process play a crucial role in the later structural deformation upon thermal exposure. The simulation results are in very good agreement with experimental data obtained from SEM images and previous studies by ptychographic X-ray tomography.  相似文献   
59.
Heat-bonded nonwoven geotextiles (HBNGs) made from synthetic fibers are widely used in engineering practices. One of the challenges on the way is to link the properties of fibers and the fabric's microstructure to the deformation and failure mechanisms of HBNGs. In this study, a random distribution geometry method was developed to reproduce the complex fibrous structure of HBNG. A piecewise linear model was adopted to reproduce the nonlinear stress-strain relationships of single fibers. The present method has been successfully applied in the simulation of uniaxial and biaxial tensile tests and puncture test. The orientation distribution of fibers and the mechanical behaviors (e.g., deformation, strain localization, force-strain relationship) of HBNG specimen were reasonably simulated. Specifically, the hourglass shape during uniaxial tensile test, the axisymmetric deformation pattern during biaxial tensile test and the trumpet shape during puncture test were all well reproduced. The present method provides an applicable tool to study the complicated mechanical behaviors of HBNG and is also helpful to obtain a better understanding of its deformation and failure mechanisms.  相似文献   
60.
《Advanced Powder Technology》2019,30(12):2997-3009
During screening, a liquid stream, besides the vibration, can be applied for the acceleration of the separation. The discrete element method coupled with the smoothed particle hydrodynamics (DEM-SPH) is used to numerically analyse wet continuous screening here. Within the applied DEM-SPH a new simple model for the representation of the screening surface is suggested in this study. In this model, the influence of the screening surface on the fluid is represented using external forces, which act on the SPH particles in close vicinity of the screen. A required validation of the DEM-SPH method for the analysis of a vibrated particle-laden system is performed by comparing obtained DEM-SPH results with the results derived using the DEM coupled with finite volume method. The performed simulations of dry and wet continuous screening demonstrate that flowing water, in most simulated cases, accelerates the separation of particles. The presented study demonstrates the potential of the coupled DEM-SPH method for the analysis of wet screening processes. To our best knowledge, the simulation of wet screening using a two-way coupled numerical DEM-SPH approach not resolving the flow around individual particles is demonstrated in the scientific literature for the first time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号