首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   6篇
  国内免费   14篇
综合类   5篇
化学工业   8篇
金属工艺   2篇
机械仪表   8篇
建筑科学   13篇
能源动力   303篇
轻工业   29篇
石油天然气   4篇
无线电   74篇
一般工业技术   84篇
冶金工业   3篇
原子能技术   5篇
自动化技术   47篇
  2024年   2篇
  2023年   15篇
  2022年   38篇
  2021年   34篇
  2020年   37篇
  2019年   40篇
  2018年   26篇
  2017年   16篇
  2016年   17篇
  2015年   8篇
  2014年   33篇
  2013年   28篇
  2012年   37篇
  2011年   48篇
  2010年   26篇
  2009年   30篇
  2008年   35篇
  2007年   15篇
  2006年   16篇
  2005年   8篇
  2004年   20篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   7篇
  1996年   3篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1991年   4篇
  1990年   1篇
  1988年   2篇
排序方式: 共有585条查询结果,搜索用时 15 毫秒
51.
Engineering strategies were applied to promote the phototrophic H2 production of an indigenous purple nonsulfur bacterium Rhodopseudomonas palustris WP3-5 using major components (i.e., acetate, butyrate, and lactate) of dark fermentation effluents as carbon sources. First, performance of cell growth and photo-H2 production on each carbon source was examined individually. It appeared that acetate was the most effective carbon source for photo-H2 production, giving an overall H2 production rate and H2 yield of 12.68 ml/h/l and 67.1%, respectively. Next, the effect of substrate concentration of each carbon source on photo-hydrogen production was investigated. Kinetic models were developed to describe the correlation between maximum specific growth rate/specific H2 production rate and the substrate concentration. The results show that using acetate and lactate as the carbon source, the kinetics for the cell growth and photo-hydrogen production can be described by Monod-type and Michaelis–Menten models, respectively, whereas substrate inhibition occurred when using butyrate as the carbon source. The continuous cultures were also conducted at a hydraulic retention time of 96 h using synthetic dark fermentation soluble metabolites (with a 5 and 10 fold dilution) as the influent. The phototrophic H2 production efficiency was stably maintained for over 30 days with an overall H2 yield 10.30 and 11.97 mol H2/mol sucrose, when using 5-fold and 10-fold diluted dark fermentation effluent, respectively, as the substrate for dark fermentation. This demonstrates the feasibility of using the sequential dark and photo fermentation for high-yield biohydrogen production.  相似文献   
52.
The effect of coculture of Clostridium butyricum and Escherichia coli on hydrogen production was investigated. C. butyricum and E. coli were grown separately and together as batch cultures. Gas production, growth, volatile fatty acid production and glucose degradation were monitored. Whilst C. butyricum alone produced 2.09 mol-H2/mol-glucose the coculture produced 1.65 mol-H2/mol-glucose. However, the coculture utilized glucose more efficiently in the batch culture, i.e., it was able to produce more H2 (5.85 mmol H2) in the same cultivation setting than C. butyricum (4.62 mmol H2), before the growth limiting pH was reached.  相似文献   
53.
Global research is moving forward in developing biological production of hydrogen (biohydrogen) as a renewable energy source to alleviate stresses due to carbon dioxide emissions and depleting fossil fuels resource. Biohydrogen has the potential to replace current hydrogen production technologies relying heavily on fossil fuels through electricity generation. While biohydrogen research is still immature, extensive work on laboratory- and pilot-scale systems with promising prospects has been reported. This work presents a review of advances in biohydrogen production focusing on production pathways, microbiology, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.  相似文献   
54.
Several reports have demonstrated the feasibility of hydrogen production by dark fermentation (DF). However, most reports had resorted to mesophilic or thermophilic conditions to increase hydrogen yield, overlooking the energy input to the process and hence, loss of net energy gain. For net positive energy gain, energy input to the process should be minimized and additional energy should be harvested from the aqueous end products of DF. Our previous study presented an approach to assess the potential for net energy gain from the hydrogen produced by DF, and from the end products of DF via anaerobic digestion (AD) or microbial fuel cells (MFC). In this study, that approach is extended to identify the most promising process configuration and operating conditions to maximize net energy gain possible from liquid and particulate organic wastes. Based on this analysis, DF followed by MFC appears to result in higher net energy gains.  相似文献   
55.
The current–voltage (I–V) characteristics of monocrystalline, polycrystalline and amorphous silicon solar cells are measured in the dark. A two diodes equivalent model is used to describe the electronic properties of solar cells. The non-linear curve fitting of the dark I–V curves obtain besides the diode ideality factors and the reverse saturation currents, the series and shunt resistance of the solar cells. These parameters determine the fill factor and the efficiency of the solar cells.  相似文献   
56.
氮用量对晒红烟生理特性的影响   总被引:3,自引:0,他引:3  
采用盆栽试验研究了氮用量对晒红烟生理特性的影响。结果表明,随着氮用量的增加,硝酸还原酶(NR)活性、转化酶活性(INV)和叶绿素含量呈上升趋势,但团棵期大于150kg/hm2施氮水平处理的烟叶NR活性下降,不施氮和195kg/hm2施氮水平处理的烟叶NR/INV比值较低。在一定范围内,可变荧光(Fv)与固定荧光(Fo)的比值(Fv/Fo)和可变荧光与最大荧光(Fm)的比值(Fv/Fm)均随施氮量增加而递增,但旺长期以前氮用量大于150kg/hm2的处理Fv/Fo和Fv/Fm的比值反而降低。  相似文献   
57.
Macroalgae are rich in carbohydrates which can be used as a promising substrate for fermentative biohydrogen production. In this study, Cladophora sp. biomass was fermented for biohydrogen production at various inoculum/substrate (I/S) ratios against a control of inoculum without substrate in laboratory-scale batch reactors. The biohydrogen production yield ranged from 40.8 to 54.7 ml H2/g-VS, with the I/S ratio ranging from 0.0625 to 4. The results indicated that low I/S ratios caused the overloaded accumulation of metabolic products and a significant pH decrease, which negatively affected hydrogen production bacteria's metabolic activity, thus leading to the decrease of hydrogen fermentation efficiency. The overall results demonstrated that Cladophora sp. biomass is an efficient fermentation feedstock for biohydrogen production.  相似文献   
58.
According to the International Energy Agency, only a small part of the full potential of biomass energy is currently used in the world. The annual amount of agricultural waste in the Russian Federation is estimated at about 152 million tons, and the energy potential of animal waste is 201 PJ/year. Anaerobic digestion is an efficient method of converting organic waste into renewable energy sources. Previously, the positive effect of pretreatment of various organic feedstocks in vortex layer apparatus (VLA) on the characteristics of anaerobic digestion and energy efficiency was shown. Currently, there is a significant interest in the world in obtaining biohydrogen from organic waste using the dark fermentation (DF) process. During pretreatment in the VLA, the iron working bodies are abraded and iron particles are introduced into the feedstock of the DF reactor. This may have a positive effect on the production rate and yield of hydrogen, which has not been previously studied. This work is aimed at evaluating the possibility of using the VLA as a method for pretreatment of a dark fermentation feedstock for the intensification of biohydrogen production. To achieve this goal, an experimental setup was constructed. It consisted of a 45 L DF reactor, a VLA and a process control system to collect data on the DF process parameters every 5 min. At a hydraulic retention time in the DF reactor of 24 h and in the VLA of 30 s, the hydrogen content in the biogas increased from 51.1% to 52.2%. At the same time, the pH increased from 3.85 to 4.8–4.9, and the hydrogen production rate increased by 16% to 1.941 L/(L day). The hydrogen yield was 80.9 ml/g VS. Thus, pretreatment of the feedstock in VLA can be an effective way to intensify the DF process; however, further study of the VLA operating modes is required in order to optimize the concentrations of iron particles introduced into the feedstock for the most efficient continuous production of dark fermentative biohydrogen.  相似文献   
59.
Dark fermentation (DF) is a promising technology for biohydrogen production. Low efficiency of biohydrogen production is a bottleneck of the scale-up prospects for DF. Additives have been extensively studied to improve the biohydrogen production efficiency. Among of them, iron-based additives present a promising application potential due to their demonstrated significant enhancement of DF efficiency and among the low-cost bioactive agents. However, current reviews mainly examined the effects of nano-materials on DF and an in-depth analysis of enhancing mechanisms with addition of iron-based additives in DF is still lacking. To this end, this article comprehensively reviewed and evaluated the effects of iron-based additives on DF. Further, the potential mechanisms, including altering metabolic pathways, improving activities of microbes and enzymes, promoting electron delivery, and enriching hydrogen-producing bacteria, were discussed. Lastly, prospects and challenges of iron-based additives for subsequent research and large-scale application for DF were summarized.  相似文献   
60.
In recent years, public attention has been increasingly attracted to solving two inextricably linked problems - preventing the depletion of natural resources and protecting the environment from anthropogenic pollution. The annual consumption of livestock waste for biogas production is about 240 thousand m3 per year, which is 0.17% of the total manure produced at Russian agricultural enterprises. At present, the actual use of organic waste potentially suitable for biogas production is 2–3 orders of magnitude lower than the existing potential for organic waste. Currently, hydrogen energy is gaining immense popularity in the world due to the problem of depletion of non-renewable energy sources - hydrocarbons, and environmental pollution caused by their increasing consumption. Of particular interest is the dark process of producing hydrogen-containing biogas in the processing of organic waste under anaerobic conditions, which allows you to take advantage of both energy production and solving the problem of organic waste disposal. An energy analysis of a two-stage anaerobic liquid organic waste processing system with the production of hydrogen- and methane-containing biogases based on experimental data obtained in a laboratory plant with increased volume reactors was performed. The energy efficiency of the system is in the range of 1.91–2.74. Maximum energy efficiency was observed with a hydraulic retention time of 2.5 days in a dark fermentation reactor. The cost of electricity to produce 1 m3 of hydrogen was 1.093 kW·h with a hydraulic retention time of 2.5 days in the dark fermentation reactor. When the hydraulic retention time in the dark fermentation reactor was 1 day, the specific (in ratio to the processing rate of organic waste) energy costs to produce of 1 m3 of hydrogen were minimal in the considered hrt range, and amounted to 26 (W/m3 of hydrogen)/(m3 of waste/day). Thus, the system of two-stage anaerobic processing of liquid organic waste to produce hydrogen and methane-containing biogases is an energy-efficient way to both produce hydrogen and process organic waste.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号