首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   4篇
  国内免费   7篇
电工技术   1篇
综合类   2篇
化学工业   248篇
金属工艺   36篇
机械仪表   15篇
建筑科学   8篇
矿业工程   2篇
能源动力   18篇
轻工业   1篇
石油天然气   3篇
无线电   3篇
一般工业技术   64篇
冶金工业   14篇
  2024年   1篇
  2023年   18篇
  2022年   30篇
  2021年   27篇
  2020年   35篇
  2019年   24篇
  2018年   27篇
  2017年   27篇
  2016年   18篇
  2015年   9篇
  2014年   19篇
  2013年   27篇
  2012年   12篇
  2011年   25篇
  2010年   12篇
  2009年   16篇
  2008年   15篇
  2007年   8篇
  2006年   4篇
  2005年   8篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1989年   1篇
排序方式: 共有415条查询结果,搜索用时 249 毫秒
21.
预应力混凝土管桩在沉桩过程中,将发生挤土效应和土塞效应,二者是有机统一的。基于SMP强度准则,考虑土塞效应,分析了预应力混凝土管桩的挤土效应及土塞效应,并推导了预应力混凝土管桩的应力场及位移场的计算公式。通过实例表明,基于考虑中间主应力的SMP强度准则推导得到的预应力混凝土管桩的应力状态及位移场的计算公式,在实际工程中具有一定的现实指导意义。  相似文献   
22.
Lead-free Bi0.5Na0.5TiO3 piezoelectric ceramics were successfully prepared by reactive flash sintering of Bi2O3-NaCO3-TiO2 mixed powders, where phase transformation and densification occurred simultaneously. The influence of electric field strength, current density and holding time at constant current state on the phase transformation and densification were investigated. The current density had a significant influence on the extent of phase transformation and densification. The holding time had no influence on the phase transformation, but had an important effect on crystallinity of sample. The sintered bulks exhibited the maximum polarization Pm of 16.8 μC/cm2, remanent polarization Pr of 9.6 μC/cm2, coercive field Ec of 29 kV/cmm, maximum electric-field-induced strain of 0.053 %, and piezoelectric coefficient d33 of 85 pC/N. The reactive flash sintering can prepare the dense and single-phase ceramics from multiphase precursor powders in one step of flash, providing a new way for rapid production of ceramic materials.  相似文献   
23.
Lithium garnet oxides with 6.5 mol Li, such as Li6.5La3Zr1.5(Ta/Nb)0.5O12, typically crystallise in cubic structure and exhibit excellent room-temperature ionic conductivity close to 1 mS cm?1. However, it is challenging to densify garnet oxides. In this work, we investigated how the co-doping of tantalum (Ta) and niobium (Nb) affects the densification of pressureless sintered garnet electrolytes with compositions of Li6.5La3Zr1.5Ta(0.5?x)NbxO12, where x = 0–0.5. The highest densification (94.5% of relative density) was achieved in Li6.5La3Zr1.5Ta0.1Nb0.4O12 (TN-LLZO) when it was sintered at 1150 °C for 6 h. This TN-LLZO garnet electrolyte delivers an ionic conductivity of 1.04 × 10?3 S cm?1 (at 22 °C) with a low activation energy of 0.41 eV. Our findings demonstrate that the content of dopants (Ta and Nb) plays a critical role in enhancing the sintering performance of garnet ceramics at ambient pressure.  相似文献   
24.
Application of Ultrafast High-temperature Sintering (UHS) technique to rapidly densify barium titanate ceramics has been explored for the first time. Bulk ceramic with ~94% density was obtained by UHS at ~1340 °C for 60 seconds. The densification process was accompanied with progressive sample discolouration from light to dark grey. Further analysis indicates that oxygen vacancy and its associated Ti-rich phase Ba4Ti12O27 are present in the ceramics. Their roles in ultrafast densification and sample discoloration are discussed. Due to the presence of oxygen vacancies, the UHSed ceramics generally exhibit a colossal dielectric constant of ~ 15–30k at 1 kHz, with dielectric loss of ~0.07–0.10, while the ceramics without oxygen vacancy retain a dielectric constant of ~3000–6000 and dielectric loss of ~ 0.06 at 1 kHz which are comparable to that of the conventionally sintered ceramics. Furthermore, the challenges in applying UHS to sinter thick BT ceramics are discussed, aided by thermal simulations.  相似文献   
25.
This study investigated the densification behaviors and microstructural evolution of Al2O3–ZrO2 (3Y) composite ceramics doped with four different amounts of TiO2 (0, 1, 4, and 8 wt%; denoted as 0T, 1T, 4T, and 8T, respectively) to clarify the effect of TiO2 dopants on densification. The shrinkage rate during densification increased with the increase in the amount of TiO2. The development of grain boundary feature was also examined. The undoped ceramic showed clean grain boundaries. Thin liquid grain boundary phases were observed in 1T, whereas large liquid phases were found on the grain boundary and at the junction pockets in 4T and 8T. The results were discussed in terms of the relationship between densification and grain boundary feature.  相似文献   
26.
In this study, cermets composed of zirconium diboride and zirconium carbide with intergranular zirconium were sintered by reactive hot-pressing. Relative density exceeding 97% was obtained for the sintered cermets having four distinct compositions varying in concentration of excess Zr. Their densification behaviour was examined by monitoring displacement during sintering. The microstructure was characterized by scanning electron microscopy and X-ray diffraction, and the elastic and mechanical properties were evaluated at room temperature. The effects of Zr concentration on the densification and mechanical properties were assessed. The ZrB2 and ZrC micron-grains coarsened with increasing amount of Zr starting material. In addition, the cermets exhibited high flexural strength (546–890 MPa) and fracture toughness (6.63–10.24 MPa m1/2), which simultaneously increased with increasing Zr concentration. However, the elastic moduli and hardness (11–18 GPa) decreased with increasing Zr. The shear modulus and Young's modulus were in the range of 150–190 GPa and 360–440 GPa, respectively.  相似文献   
27.
Nanosized Ag-doped ceria (Ce1-xAlxO2-δ)powders (0.1 ≤ x ≤ 0.04) were obtained by self-propagating room temperature reaction. The solid solubility of Ag into ceria lattice was the highest reported so far. X-ray diffraction analysis and field emission scanning microscopy results showed that the doped samples are single phase solid solutions with fluorite-type structure and all prepared powders were nanometric in size. The average size of Ce1-xAgxO2-▯ particles lies at about 4 nm. Raman spectra revealed an increase in the amount of oxygen vacancies with the increase of Ag concentration, such as is foreseen. The thermal stability of solid solution was followed by XRD. Microstructure development was studied by scanning electron microscopy. By controlling the processing variables, it was possible to obtain high density samples with homogeneous microstructure at low sintering temperature.  相似文献   
28.
The residual carbon content of ultra-fine hafnium carbide (HfC) powder was controlled by the optimization of the synthesis process, and the effect of residual carbon on the densification of HfC powder was analyzed. The amount of residual carbon in the HfC powder could be reduced by the de-agglomeration of HfO2 powder before the carbo-thermal reduction (CTR) process. The average particle size of HfO2 powder decreased from 230 to 130 nm after the de-agglomeration treatment. Ultra-fine (d50: 110 nm) and highly pure (metal basis purity: >99.9 % except for Zr) HfC powder was obtained after the CTR at 1600 °C for 1 h using the C/Hf mixing ratio of 3.3. In contrast, the C/Hf ratio increased to 3.6 without the de-agglomeration treatment, indicating that a large amount of excess carbon was required for the complete reduction of the agglomerated HfO2 particles. HfC ceramics with high relative density (>98 %) were obtained after spark plasma sintering at 2000 °C under 80 MPa pressure when using the HfC powder with low excess carbon content. In contrast, the densification did not complete at a higher temperature (2300 °C) and pressure (100 MPa) when the HfC powder contained a large amount of residual carbon. The results clearly indicated that residual carbon suppressed the densification of HfC powder in case the carbide powder had low oxygen content, and the residual carbon content could be controlled by the optimization of the synthesis process. The average grain size and Vickers hardness of the sintered specimen were 6.7(±0.7) μm and 19.6 GPa, respectively.  相似文献   
29.
《Ceramics International》2020,46(5):5773-5778
In this research work, the effects of silicon carbide (SiC) as the most important reinforcement phase on the densification percentage and mechanical characteristics of zirconium diboride (ZrB2)-matrix composites were studied. In this way, a monolithic ZrB2 ceramic (as the baseline) and three ZrB2 matrix specimens each of which contains 25 vol% SiC as reinforcement in various morphologies (SiC particulates, SiC whiskers, and a mixture of SiC particulates/SiC whiskers), have been processed through spark plasma sintering (SPS) technology. The sintering parameters were 1900 °C as sintering temperature, 7 min as the dwell time, and 40 MPa as external pressure in vacuum conditions. After spark plasma sintering, a relative density of ~96% was obtained (using the Archimedes principles and mixture rule for evaluation of relative density) for the unreinforced ZrB2 specimen, but the porosity of composites containing SiC approached zero. Also, the assessment of sintered materials mechanical properties has shown that the existence of silicon carbide in ZrB2 matrix ceramics results in fracture toughness and microhardness improvement, compared to those measured for the monolithic one. The simultaneous addition of silicon carbide particulates (SiCp) and whiskers (SiCw) showed a synergistic effect on the enhancement of mechanical performance of ZrB2-based composites.  相似文献   
30.
《Ceramics International》2020,46(3):2612-2617
To promote the densification and therefore the mechanical properties of boride-based ceramics, MgO was added as sintering aid into Os0.9Re0.1B2 powders for densification by using spark plasma sintering (SPS). The Os0.9Re0.1B2 powders were synthesized by mechanochemical method from powder mixture of Os, Re and amorphous B. The role of MgO on densification, phase composition, microstructure and mechanical properties (hardness, fracture toughness and wear behavior) were studied by using X-ray diffraction (XRD), scanning electron microscope (SEM) with energy-dispersive spectroscopy (EDS), micro indentation and ball-on-disk tribometer. The results show that, with the introduction of MgO as sintering aid, the relative density of the Os0.9Re0.1B2 ceramic samples increased. When the MgO content reached 9 wt%, the as-sintered sample is almost fully dense. No obvious regularity was found from the samples with the addition of different content of MgO. Vickers hardness values of the samples with 0, 3 wt% and 9 wt% MgO are found to be very close with each other within the experimental error (~30 GPa), while the sample with the addition of 6 wt% MgO exhibits the highest hardness of ~35 GPa. The fracture toughness of the samples is decreased slightly with the addition of MgO. The friction coefficient and wear rate of the sample with the addition of 6 wt% MgO was also found to be the lowest among all samples, which indicate best wear resistance. As a whole, with the addition content of 6 wt% MgO, the Os0.9Re0.1B2 ceramic sample performs relatively excellent mechanical properties among four groups of samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号