首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   4篇
  国内免费   7篇
电工技术   1篇
综合类   2篇
化学工业   248篇
金属工艺   36篇
机械仪表   15篇
建筑科学   8篇
矿业工程   2篇
能源动力   18篇
轻工业   1篇
石油天然气   3篇
无线电   3篇
一般工业技术   64篇
冶金工业   14篇
  2024年   1篇
  2023年   18篇
  2022年   30篇
  2021年   27篇
  2020年   35篇
  2019年   24篇
  2018年   27篇
  2017年   27篇
  2016年   18篇
  2015年   9篇
  2014年   19篇
  2013年   27篇
  2012年   12篇
  2011年   25篇
  2010年   12篇
  2009年   16篇
  2008年   15篇
  2007年   8篇
  2006年   4篇
  2005年   8篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1989年   1篇
排序方式: 共有415条查询结果,搜索用时 693 毫秒
371.
《Ceramics International》2020,46(8):11735-11742
Titanium carbide (TiC) composites containing 10 vol% silicon carbide whisker (SiCw) were spark plasma sintered at different temperatures of 1800, 1900, and 2000 °C under a pressure of 40 MPa and a holding time of 7 min. At the sintering temperature of 1900 °C, the relative density, Vickers hardness, and flexural strength of the sintered samples hit their maximum values of 98.7%, 24.4 GPa, and 511 MPa, respectively. The microstructural characteristics of the sintered samples were assessed by optical and field emission scanning electron microscopy (FESEM) and XRD. The results revealed that at 1900 °C, the dispersion of SiCw in the TiC matrix was homogenous, no chemical reaction took place between the reinforcement and the matrix, and produced a fine-grained microstructure. It was found that the thermal conductivity of SPSed samples did not have the same trend with relative density and mechanical properties. A maximum value of 32.3 W/mK was measured for the thermal conductivity of the composite sintered at 2000 °C.  相似文献   
372.
通过使用二辊轧机,采用一火八道次的热轧制工艺进行多元稀土钨合金线材开坯,对开坯后的多元钨合金线材进行退火处理。利用扫描电子显微镜(SEM)、能谱、光学显微镜、显微硬度计等表征分析轧制致密化过程,轧制、退火对钨线材组织性能的影响。研究结果表明:轧制过程中烧结孔发生变形、闭合,最终在剪切力的作用下消失,多元稀土钨线材密度增加,在轧制温度1 650℃,保温时间30min,轧制速度170m/s下进行轧制,孔隙度由6.50%减少至4.61%,钨线材密度由17.84g/cm3增加到18.12g/cm3;轧制组织中的晶粒在轧制方向上伸长,形成相互挤压、重叠的加工态组织,热轧过程主要发生动态回复过程,在晶粒内部形成胞状亚结构;在1 100℃至1 300℃退火保温时仅发生回复并未再结晶,在1 400℃保温60min发生再结晶,晶粒未完全长大,在1 600℃退火保温60min时,再结晶过程完成。  相似文献   
373.
《Ceramics International》2020,46(6):7609-7614
β-TCP has excellent biodegradability and bioabsorption properties, and is regarded as an ideal hard tissue repair material. In the present study, 3D printing β-TCP green bodies was realized using the stereo lithography apparatus (SLA) technology. The effects of the KH-560 dispersant and solid loading on the slurry properties were investigated systematically. The optimized KH-560 addition amount and the solid loading of the slurry were 2.0 wt% and 48 wt%, respectively, and the corresponding slurry for the subsequent SLA 3D printing exhibited good fluidity, uniform dispersion and good stability. The sintering schedule of the printed β-TCP green bodies was optimized by the DSC-TG analysis. By sintering the green bodies at 1050 °C for 8 h, high quality β-TCP bioceramics without crack or deformation were fabricated. It was found that increasing the solid loading of the slurry would decrease the porosity while reducing the shrinkage degree of the β-TCP ceramics. However, the slurry could hardly be printed when its solid loading was higher than 50 wt%.  相似文献   
374.
A method for simulating microscopic shrinkage behaviour of powder particles in sintering of a compact is proposed on the basis of the granular element method. In this method, the powder particles are modelled as many circular elements undergoing viscoplastic deformation due to surface tension during the sintering, and the microscopic shrinkage is calculated by equilibrating forces acting on the elements. The variation in shape of necks between the elements during the sintering is taken into consideration. Plane-strain shrinkage in sintering is calculated under regular and irregular dispositions of powder particles. In the regular disposition of powders having the same diameter, the obtained shrinkage behaviour is compared with the experimental one using glass rods and the calculated one by the viscoplastic finite-element simulation respectively. It is shown from the simulation of irregular disposition that the densification due to the sintering is accelerated by mixing powders having different diameters.  相似文献   
375.
单向碳/碳复合材料的化学气相渗透特征   总被引:3,自引:0,他引:3  
等温化学气相渗透(ICVI)是制备高性能碳/碳复合材料最为重要、应用最为广泛的技术手段。本文通过研究ICVI制备单向碳/碳复合材料的致密化过程,分析了单向碳/碳复合材料致密化的特点,并对致密化均匀性问题进行了初步探索,为优化工艺、提高致密化效率,提供一定的借鉴。  相似文献   
376.
采用Fe_3O_4/Al/铁基硬质合金的铝热体系,超重力熔铸铁基金属陶瓷梯度材料,分析了超重力场中多相(硬质合金颗粒、Al_2O_3陶瓷相及气体相)在高热高温铁熔体内的运动学特征及其致密化机制。结果表明,根据Stocks定律,弥散相在高温熔体内的运动速度影响因素主要有颗粒与基体熔体密度差、超重力系数、颗粒半径及温度等,在一定的超重力系数下,材料的致密度与气泡尺寸、铁熔体存在时间有关。V-Fe和Cr-Fe 2种颗粒主要集中于金属陶瓷材料的顶端,沿超重力方向粒子尺寸逐渐减小,而Mo-Fe颗粒主要集中在金属陶瓷材料与45钢分界面处,不同颗粒在材料内的分布状况有较大差异,这是金属陶瓷材料硬度呈梯度变化的主要原因。  相似文献   
377.
The favourable gas-phase conditions for deposition of TiN have been determined by a mass-spectroscopic investigation of the gaseous species in an ambient of tetrakis(dimethyl-amino)titanium (TDMAT) molecules during pulsed d.c. plasma-enhanced deposition processes. The gas-phase composition was varied, at a pressure of 0.4 Torr, a temperature of 350 °C and a bias voltage of 500 V, based on an Ar, H2, N2 ternary diagram. The results reveal that hydrogen plays a key role in the cleavage of –NMe2 from the central Ti atom. The addition of N2 to the hydrogen plasma opens up the possibility for transamination reactions by NHx formation (1<x<3), known by thermal CVD using NH3. This addition also leads to powder formation, which seems to reach a maximum within a 100% N2 plasma. In a nitrogen plasma, only relatively small amounts of gaseous species, like HCN, NH2CN, and CH3CN, are detected, which indicates that residual hydrocarbon fragments of TDMAT must be incorporated into the powder and coating. Even small amounts of Ar addition to a hydrogen plasma convert TDMAT to powder particles, which is the opposite of the densification purpose of Ar bombarment. No gaseous species, apart from small amounts of HCN, are detected, suggesting hydrocarbon-containing coatings. If Ar:H2:N2=1:1:1, no specific mechanism is dominant under the conditions used here. Decreasing the deposition temperature and pressure and increasing the bias voltage seem to favour the cleavage of –NMe2 ligands.  相似文献   
378.
Mg-doped sialon ceramics with the composition of M0.4Si10.2Al1.8O1N15 were fully densified by hot pressing at 1850 °C for 1 h, using 0.5 wt.% MgF2 or CaF2 as a sintering additive. Densification behavior, phase assemblage, microstructure, and mechanical and optical properties were investigated in detail. The addition of fluorides, especially MgF2, not only resulted in more high-temperature liquid by promoting the dissolution of more N and other constituents but also reduced the viscosity of liquid due to the terminal effect of fluorine. Consequently, the densification was effectively improved. Additionally, the fluoride addition facilitated the formation of a small amount of β-sialon. Both the samples possessed high hardness (∼20 GPa) and fracture toughness (∼4.2 MPa m1/2). The CaF2-added sample exhibited higher infrared transmittance than its counterpart due to less residual glass phase. The present work implies that fluorides are also very effective sintering additives for densifying α-sialon.  相似文献   
379.
《Ceramics International》2017,43(2):1904-1910
High-performance B4C–SiC nanocomposites with intergranular/intragranular structure were fabricated through spark plasma sintering assisted by mechanochemistry with B4C, Si and graphite powders as raw materials. Given their unique densification behaviour, two sudden shrinkages in the densification curve were observed at two very narrow temperature ranges (1000–1040 °C and 1600–1700 °C). The first sudden shrinkage was attributed to the volume change in SiC resulting from disorder–order transformation of the SiC crystal structure. The other sudden shrinkage was attributed to the accelerated densification rate resulting from the disorder–order transformation of the crystal structure. The high sintering activity of the synthesised powders could be utilised sufficiently because of the high heating rate, so dense B4C–SiC nanocomposites were obtained at 1700 °C. In addition, the combination of high heating rate and the disordered feature of the synthesised powders prompted the formation of intergranular/intragranular structure (some SiC particles were homogeneously dispersed amongst B4C grains and some nanosized B4C and SiC particles were embedded into B4C grains), which could effectively improve the fracture toughness of the composites. The relative density, Vickers hardness and fracture toughness of the samples sintered at 1800 °C reached 99.2±0.4%, 35.8±0.9 GPa and 6.8±0.2 MPa m1/2, respectively. Spark plasma sintering assisted by mechanochemistry is a superior and reasonable route for preparing B4C–SiC composites.  相似文献   
380.
A glass/ceramic composite using lead-free low melting glass (SiO2B2O3CaOMgO glass) with Al2O3 fillers was investigated. X-ray diffraction analysis revealed that the anorthite and cordierite phase appeared in the sintered composites. The dilatometric analysis showed that the onset of shrinkage took place at ∼624 °C for all the samples and the onset temperature was independent on the content of glass. The low melting glass significantly promoted densification of the composites and lowered the sintering temperature to ∼875 °C. The addition of 50 wt% glass sintered at 875 °C showed εr of 7.3, tan δ of 1.15×10−3, TEC of 5.41 ppm/°C, thermal conductivity of 3.56 W/m °C, and flexural strength of 184 MPa. The results showed that the SiO2B2O3CaOMgO glass/Al2O3 composites were strong potential candidates for low temperature cofired ceramic substrate applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号