首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   4篇
  国内免费   7篇
电工技术   1篇
综合类   2篇
化学工业   248篇
金属工艺   36篇
机械仪表   15篇
建筑科学   8篇
矿业工程   2篇
能源动力   18篇
轻工业   1篇
石油天然气   3篇
无线电   3篇
一般工业技术   66篇
冶金工业   14篇
  2024年   1篇
  2023年   18篇
  2022年   30篇
  2021年   28篇
  2020年   36篇
  2019年   24篇
  2018年   27篇
  2017年   27篇
  2016年   18篇
  2015年   9篇
  2014年   19篇
  2013年   27篇
  2012年   12篇
  2011年   25篇
  2010年   12篇
  2009年   16篇
  2008年   15篇
  2007年   8篇
  2006年   4篇
  2005年   8篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1989年   1篇
排序方式: 共有417条查询结果,搜索用时 17 毫秒
391.
Two-step sintering (TSS) was applied on nanocrystalline yttria tetragonal stabilized zirconia (3Y-TZP) to control the grain growth during the final stage of sintering. The process involves firing at a high temperature (T1) followed by rapid cooling to a lower temperature (T2) and soaking for a prolonged time (t). It is shown that for nanocrystalline 3Y-TZP (27 nm) the optimum processing condition is T1 = 1300 °C, T2 = 1150 °C and t = 30 h. Firing at T1 for 1 min yields 0.83 fractional density and renders pores unstable, leading to further densification at the lower temperature (T2) without remarkable grain growth. Consequently, full density zirconia ceramic with an average grain size of 110 nm is obtained. XRD analysis indicated that the ceramic is fully stabilized. Single-step sintering of the ceramic compact yields grain size of 275 nm with approximately 3 wt.% monoclinic phase. This observation indicates that at a critical grain size lower than 275 nm, phase stabilization is induced by the ultrafine grain structure.  相似文献   
392.
单板压密化模仿珍贵装饰薄木技术   总被引:1,自引:0,他引:1  
《家具》2006,(1):52-54
本文分析了装饰薄木使用现状,从经济和技术角度论述了开发替代装饰薄木的途径。通过实验初步得出,杨木单板在温度140℃-180℃、压力4MPa-8MPa、定型时同10mm-30mm的条件下.压密后,颜色明显变深,密度、硬度度耐磨性提高,有可能制成装饰薄木。  相似文献   
393.
银粉特性对银膜致密性的影响   总被引:2,自引:0,他引:2  
研究了颗粒尺寸、比表面积、形状及孔隙等银粉特性对膜层致密性的影响。通过3种不同粉末对膜层初始外观及高温结行为的分析,解释团聚的颗粒体和空隙的收缩导致膜层开裂,归纳出结晶完整,孔隙较少的银粉有利于促进致密化和减少颗粒长大。  相似文献   
394.
Manufacturing of near full dense (>97%) 8 mol% yttria-stabilized zirconia (8YSZ) nanopowder (15–33 nm) compacts was manipulated using conventional sintering (CS), two-step sintering (TSS) and microwave-assisted sintering methods. Microwave firing was performed via two different heating rates, i.e. 5 and 50 °C min−1. Although, the lower rate microwave sintering (LMS) was found to yield the higher densities at lower temperatures, this regime ultimately did not provide higher final densities compared to the other methods. The higher rate microwave sintering (HMS) on the other hand managed to suppress the accelerated grain growth and resulted to a finer microstructure (0.9 μm) than LMS (2.35 μm) and CS (2.14 μm). In spite of the great capability of TSS method in fabricating the specimens with ultra-fine grains (0.29 μm), microstructural inhomogeneity and the long total sintering time (>20 h) in comparison with HMS (29 min) set restrictions on the application of TSS method. Based on the effect of grain size on the mechanical properties of ceramics, the specimens produced by TSS exhibited higher fracture toughness (3.16 ± 0.06 MPa m1/2) than those obtained from CS (1.61 ± 0.07 MPa m1/2) and LMS (1.9 ± 0.09 MPa m1/2), due to their finer grain size. The proximity in the fracture toughness values of TSS and HMS (3.17 ± 0.10 MPa m1/2) samples stems from the higher microstructural homogeneity caused by HMS, while having a larger grain size.  相似文献   
395.
Y-α-SiAlON (Y1/3Si10Al2ON15) ceramics with 5 wt.%BaAl2Si2O8 (BAS) as an additive were synthesized by spark plasma sintering (SPS). The kinetic of densification, phase transformation sequences and grain growth during sintering process were investigated. Full densification could be achieved by 1600 °C without holding and using a heating rate of 100 °C min−1, but the transformation from α-Si3N4 to α-SiAlON is not completed simultaneously with the densification process. The equilibrium phase assemblage could be reached after SPS at 1800 °C for 5 min and the resultant material possesses self-reinforced microstructure with high hardness of 19.2 GPa and fracture toughness of 6.8 MPa m1/2. The complete crystallization of BAS is beneficial to the high temperature mechanical properties. The obtained could maintain the room strength up to 1300 °C.  相似文献   
396.
Degradation mechanism of the electrolyte and air electrode is reported for solid oxide electrolysis cells (SOECs). Symmetric cells composed of yttria-stabilized zirconia (YSZ) electrolyte, Sr-doped LaMnOδ (LSM)/YSZ composite working and counter electrodes, and Pt ring-type reference electrode are used to simulate the operating conditions of the air electrode. Degradation behavior in the impedance spectra is characterized as growth of mid-frequency arc at the initial stage, gradual increase of ohmic resistance throughout the operation, and sharp rise of low frequency resistance at the final stage, followed by catastrophic cell failure. Initial stage degradation is attributed to deactivation of LSM, resulting from reduction of oxygen vacancy concentration and/or segregation of passivation species on LSM surface under anodic current passage. Intergranular fracture, which occurs along the grain boundaries of the YSZ electrolyte, is responsible for gradual increase of ohmic resistance. Increase of low frequency arc at the final stage is caused by densification of the air electrode, leading to excessive pressure build-up and delamination of the air electrode. Cation migration, which is facilitated by oxygen excess nonstoichiometry of LSM and externally applied electric field, is considered to be the main cause of permanent damages.  相似文献   
397.
《粉末冶金学》2013,56(3):366-375
Abstract

The growing field of aluminium powder metallurgy (PM) brings promise to an economical and environmental demand for the production of high strength, light weight aluminium engine components. In an effort to further enhance the mechanical properties of these alloys, the effects of hot upset forging sintered compacts were studied. This article details findings on the hot compression response of these alloys, modelling of this flow behaviour, and its effects on final density and microstructure. Two aluminium–silicon based PM alloys were used for comparison. One alloy was a hypereutectic blend known as Alumix-231 (Al–15Si–2·5Cu–0·5Mg) and the second was an experimental hypoeutectic system (Al–6Si–4·5Cu–0·5Mg). Using a Gleeble 1500D thermomechanical simulator, sintered cylinders of the alloys were upset forged at various temperatures and strain rates, and the resulting stress–strain trends were studied. The constitutive equations of hot deformation were used to model peak flow stresses for each alloy when forged between 360 and 480°C, using strain rates of 0·005–5·0 s?1. Both alloys benefited from hot deformation within the ranges studied. The experimental alloy achieved an average density of 99·6% (±0·2%) while the commercial alloy achieved 98·3% (±0·6%) of its theoretical density. It was found that the experimentally obtained peak flow stresses for each material studied could be very closely approximated using the semi-empirical Zener–Hollomon models.  相似文献   
398.
Two techniques have been used to analyze the densification of silica sand by horizontal sinusoidal vibrations of frequency f = 50 Hz for relative accelerations between 0 and 6: the quantitative analysis of motion observed through the transparent wall, and the altitude map of the free top surface of the sample. The first technique was used to analyze the transient regime: during the first 10 s, slight densification occurs at the bottom of the powder bed, while the upper part enters convective motion and the intermediate part reaches densities higher than 66%. The second technique allowed to quantify the evolution of the overall density vs. acceleration Γ during the steady regime (dynamic density) and after the vibrations (relaxed density): a maximum density is observed in both cases for an optimal acceleration which depends on the initial height of the powder bed. These results are analyzed and discussed.  相似文献   
399.
Cold sintering densification and coarsening mechanisms are considered from the perspective of the non-equilibrium chemo-mechanical process known in Earth Sciences as pressure solution creep (or dissolution-precipitation creep). This is an important mechanism of densification and deformation in many geological rock formations in the Earth’s upper crust, and although very slow in nature, it is of direct relevance to the cold sintering process. In cold sintering, we select particulate materials and identify experimental processing parameters to significantly accelerate the kinetics of dissolution-precipitation phenomena, with appropriate consideration of chemistry, applied stress, particle size and temperatures. In the theory of pressure solution, pressure-driven densification is considered to involve the consecutive stages of dissolution at grain contact points, then diffusive transport along the grain boundaries towards open pore surfaces, and then precipitation, all driven by chemical potential gradients. In this study, it is shown that cold sintering of BaTiO3, ZnO and KH2PO4 (KDP) ceramic materials proceeds by the same type of serial process, with the pressure solution creep rate being controlled by the slowest kinetic step. This is demonstrated by the values of activation energy (Ea) for densification, which are in good agreement with the existing literature on dissolution, precipitation, or coarsening. The influence of pressure on the morphology of ZnO grains also supports the pressure solution mechanism. Other characteristics that can be understood qualitatively in terms of pressure solution are observed in the in systems such as BaTiO3 and KDP. We further consider activation energies for grain growth with respect to the precipitation process, as well as evidence for coalescence and Ostwald ripening during cold sintering. For completeness we also consider materials that show significant plastic deformation under compression. Our findings point the way for new advances in densification, microstructural control, and reductions in cold sintering pressure, via the use of appropriate transient solvents in metals and hybrid organic-inorganic systems, such as the Methylammonium lead bromide (MAPBr) perovskite.  相似文献   
400.
Aluminum nitride (AlN) ceramics with dense structure, high thermal conductivity, and exceptional mechanical properties were fabricated by pressureless sintering with a novel non-oxide sintering additive, samarium fluoride (SmF3). The results showed that the use of a moderate amount of SmF3 promoted significant densification of AlN and removed the oxygen impurity. This led to the formation of fine and isolated secondary phase that cleaned the grain boundaries and increased the contact between AlN grains, remarkably enhancing thermal conductivity. Furthermore, SmF3 also exhibited grain refinement and grain boundary strengthening effects similar to traditional sintering additive, samarium oxide (Sm2O3), leading to high mechanical properties in SmF3-doped AlN samples. The most optimal characteristics (thermal conductivity of 190.67 W·m−1·K−1, flexural strength of 403.86 ± 18.27 MPa, and fracture toughness of 3.71 ± 0.19 MPa·m1/2) were achieved in the AlN ceramic with 5 wt% SmF3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号