首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   4篇
  国内免费   7篇
电工技术   1篇
综合类   2篇
化学工业   248篇
金属工艺   36篇
机械仪表   15篇
建筑科学   8篇
矿业工程   2篇
能源动力   18篇
轻工业   1篇
石油天然气   3篇
无线电   3篇
一般工业技术   64篇
冶金工业   14篇
  2024年   1篇
  2023年   18篇
  2022年   30篇
  2021年   27篇
  2020年   35篇
  2019年   24篇
  2018年   27篇
  2017年   27篇
  2016年   18篇
  2015年   9篇
  2014年   19篇
  2013年   27篇
  2012年   12篇
  2011年   25篇
  2010年   12篇
  2009年   16篇
  2008年   15篇
  2007年   8篇
  2006年   4篇
  2005年   8篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1989年   1篇
排序方式: 共有415条查询结果,搜索用时 562 毫秒
411.
Hydrocyclones are used for densification of waste streams prior to drying or for classification of solid and liquids in two-phase streams. They are becoming popular in industrial units due to their simplicity, low energy consumption and high versatility. However, the effect of geometry and operating conditions on the cut diameter and solid recovery efficiency have been independently studied, and therefore there are no studies approaching the influence of all the parameters simultaneously. Thus, a detailed experimental study was conducted to ascertain the effect of the hydrocyclone body (diameter and angle) and the vortex finder and spigot size and shape, as well as operating conditions (inlet pressure and solid concentration) on the separation efficiency curve, cut diameter, solid and volume recovery and the main features of the outlet streams. It has been proven that separation efficiency and outlet stream composition are sensitive to both the geometry of the hydrocyclone and the operating parameters. Therefore, knowledge of their influence is essential for the design of industrial units where liquid reutilisation is a major concern.  相似文献   
412.
《Ceramics International》2023,49(5):7350-7358
Nowadays it is possible to produce ceramic parts with solid and complex shapes with rapid and efficient shaping and sintering techniques. In this paper, 3mol% yttria stabilized zirconia (3Y-TZP) dense and lattice parts were shaped by Digital light processing method (DLP) and densified by conventional (CV) and microwave (MW) sintering. 3Y-TZP samples were MW sintered up to 1550 °C with different heating rates (10, 30, and 50 °C/min) for the dense samples and 30 °C/min for the lattice samples. Controlled thermal cycles with a homogenous heating and no thermal runaway was reached. CV sintering was carried out at 10 °C/min up to 1550 °C. No inter-layer delamination was detected after sintering by the two methods. Both dense and lattice MW-sintered samples reached high final densities (equivalent to obtained values with CV-sintered samples, i.e., ≥98% T.D.), but exhibited a lower average grain size than CV-sintered materials. The different architectures between dense and lattice samples resulted in a different specific absorbed power: the power absorbed by the dense sample is lower than that absorbed by the lattice one meaning that this sample architecture heats up easily.  相似文献   
413.
《Ceramics International》2023,49(5):7245-7251
Ultra-smooth surface with sub-nanometer roughness is of great significance in various fields, including Ring Laser Gyro (RLG), high-power laser apparatus, ultraviolet optical systems, and the semiconductor industry. However, the mechanism of the ultra-smooth polishing process remains to be studied, which is of great value for understanding and optimizing optical-fabrication methods. This paper establishes a relationship between surface densification characteristics and surface roughness in conventional polishing. Moreover, we conclude that the densification process created by the longitudinal pressure, which avoids non-uniformity, is beneficial to forming super-smooth surfaces in the conventional polishing methods. Under this guidance, we can stably fabricate ultra-smooth surfaces on fused silica with 0.4 Å roughness. This result overturns the mainstream view that the longitudinal pressure in polishing should be minimized. This conclusion is meaningful for the understanding of the ultra-smooth surface formation not only in conventional polishing but also in other optical-fabrication technologies.  相似文献   
414.
Cold sintering is a chemo-mechanical densification process which allows densification of ceramics at low temperatures below 300 °C. This substantial reduction in the sintering temperature is enabled by an externally applied pressure and a compatible transient liquid phase. In this paper, ZnO is cold sintered using various commercial organic acids: formic, acetic and citric acid. The effect of these different transient phases on densification, microstructural evolution and mechanical response is investigated. Fourier transform infrared spectroscopy, thermogravimetric analyses and transmission electron microscopy were conducted to explain the chemical interactions in the cold sintering process. High relative densities (~ 96 %) were achieved by formic and acetic acid, whereas poor densification was obtained for citric acid (< 80 %), despite the higher expected solubility of zinc oxide. The higher biaxial strength found in samples sintered with formic acid compared to acetic acid (i.e. ~90 MPa vs. ~40 MPa) is discussed supported by fractographic analyses.  相似文献   
415.
《Ceramics International》2023,49(5):7404-7413
TiB2 composite ceramics containing different amounts of Ti and TiC were fabricated via spark plasma sintering (SPS), and effects of their addition contents on the microstructure and mechanical properties were discussed. The newly formed phases of TiB with a cubic lattice structure in the composite ceramics were observed. At a relatively low temperature of 1510 °C, pressure of 50 MPa, and holding time of 5 min, the TiB2 composite ceramic with 30 wt% TiC and 10 wt% Ti additions acquired an excellent strength of 727 MPa and a high toughness of 7.62 MPa m1/2. The improvement in strength and toughness was attributed to the mixed fracture mode, second phase strengthening, and increased energy consumption for crack propagation caused by the newly formed phases and fine TiC particles. In addition, the significant effects of the Ti and TiC addition contents on the densification temperature and mechanical properties of the composite ceramics were determined using analysis of variance (ANOVA).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号