首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   0篇
  国内免费   8篇
化学工业   17篇
金属工艺   3篇
机械仪表   1篇
能源动力   16篇
无线电   70篇
一般工业技术   20篇
原子能技术   6篇
自动化技术   3篇
  2023年   2篇
  2022年   1篇
  2021年   10篇
  2020年   1篇
  2019年   2篇
  2017年   13篇
  2016年   10篇
  2015年   7篇
  2014年   7篇
  2013年   8篇
  2012年   10篇
  2011年   5篇
  2010年   2篇
  2009年   8篇
  2008年   5篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1984年   1篇
排序方式: 共有136条查询结果,搜索用时 31 毫秒
71.
The charge–exciton interaction at the donor/acceptor interface plays a significant role in the exciton dissociation processes, and thus influences the performance of organic solar cells. In this work, the evidences of photocurrent generation via hole–exciton interaction (HEI) at the organic semiconductor interface in organic solar cells, which is the counterpart of photocurrent generated by electron–exciton interaction, is demonstrated. A heterojunction, composed of copper phthalocyanine (CuPc) and fullerene (C60), is used to provide free holes that interact with the excitons supplied by perfluorinated hexadecafluorophthalo-cyaninatozinc (F16ZnPc). The fact that photocurrent generation via HEI is well evidenced by: (1) a short circuit current of 0.38 mA cm−2; (2) the jump of an external quantum efficiency (EQE) around 800 nm after adding a bias light; (3) the EQE variations under bias light of different wavelengths and light intensities; and (4) the superlinear dependence of the photocurrent on the light intensity.  相似文献   
72.
To investigate photocurrent generation mechanisms in these organic solar cells (OSCs), we design and synthesize four thienothiophene (TT)-based small-molecule donors with the highest occupied molecular orbital (HOMO) levels varying from −6.4 eV to −5.1 eV, which span across the HOMO value of the [6,6]-phenyl-C70-butyric acid methyl ester (PC71BM) acceptor. We measure TT-based donor:PC71BM films’ electronic and optical properties, OSC current density-voltage characteristic, and external quantum efficiency, and perform density functional theory (DFT) calculations. Our results show that photocurrent generation depends strongly on the substitutions of the center TT groups, cyano (-CN) versus hexyloxy (-OHex). With 1 wt% donor, TTOHex:PC71BM devices produce seven times, increasing to twelve times for 5 wt % donor, higher photocurrent than neat PC71BM devices. In contrast, TTCN:PC71BM devices do not generate additional photocurrent even with 10 wt% donor. The photocurrent generation in TT-based donor:PC71BM devices depends critically on the HOMO value of the donor molecule with respect to that of PC71BM, indicating the importance of type II energy level alignment to facilitate exciton dissociation at the donor-acceptor interface. The photovoltage of all TT:PC71BM devices are comparable to neat PC71BM devices, 0.85–0.90 V, with a low voltage loss due to non-radiative recombination. The fill factor of TTOHex:PC71BM devices are low due to the low hole mobility, ~10−8 cm2/V. Following exciton dissociation, hole transport is analyzed according to three possible mechanisms: tunneling, percolation pathways, and hole back transfer. We find that the hole back transfer mechanism can explain all experimental results and therefore is the primary hole transport mechanism for photocurrent generation in TT-based donor:PC71BM dilute-donor OSCs.  相似文献   
73.
74.
We designed and fabricated poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl]] (PTB7): [6,6]-phenyl-C70-butyric-acid-methyl-ester (PC70BM)–based solar cells with gate electrodes, which can introduce an additional electric field within the devices just as in organic thin film transistors (OTFTs). Our proposed realize the simple and convenient modulation of electric field within the device, and power conversion efficiency (PCE) of 8.1% is reached at 2.0 V gate bias, significantly higher than the PCE of 6.8% at the case of no gate structure. By calculating the carrier mobility and the rate of exciton dissociation efficiency in detail, the role of electric field to the exciton dissociation and carrier transport was investigated, respectively. Meanwhile, the feasibility of the proposed device structure in practical application was discussed. The results suggest that such a gate structure has a great of prospects in achieving high efficiency polymer solar cells.  相似文献   
75.
We demonstrate the power conversion efficiency of bulk heterojunction organic solar cells can be enhanced by introducing Ag nanoparticles into organic exciton blocking layer. The Ag nanoparticles were incorporated into the exciton blocking layer by thermal evaporation. Compared with the conventional cathode contact materials such as Al, LiF/Al, devices with Ag nanoparticles incorporated in the exciton blocking layer showed lower series resistances and higher fill factors, leading to a 3.2% power conversion efficiency with a 60 nm active layer; whereas, the conventional devices have only 2.0–2.3% power conversion efficiency. Localized surface plasmon resonances by the Ag nanoparticles and their contribution to photocurrent were also discussed by simulating optical absorptions using a FDTD (finite-difference-time-domain) method.  相似文献   
76.
We present a theoretical study of states quasi-localized in CdTe barriers of HgTe/CdTe superlattices. We show that the quasi-localization of both electrons and holes will lead to strong Coulomb interaction, and thus to the formation of excitons. It is further demonstrated that such quasi-localized states, including excitons, exhibit confinement effect similar to those of loclaized states in quantum wells.  相似文献   
77.
Most highly efficient small molecule-based bulk heterojunction (BHJ) photovoltaic cells contain a large concentration of fullerene in their blend active layers. However, the excitons generated in fullerene can seriously quench at the surface of the commonly used MoO3 buffer layer, becoming a key limitation to the photovoltaic performance of these cells. In this study, we’ve investigated various anode buffer layers in the thermally evaporated tetraphenyldibenzoperiflanthene (DBP) and C70-based BHJ cells with high C70 concentration. It’s been found that obviously enhanced power conversion efficiency (PCE) of up to 6.26% can be obtained in DBP and C70-based BHJ cells via simply replacing the MoO3 buffer by poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS), which is also a commonly used anode buffer material in polymer-based BHJ cells. Photoluminescence spectra results have confirmed the suppression of exciton quenching at the anode interface by inserting this PEDOT: PSS buffer. Moreover, after adding a C70 interlayer for better electron extraction and the further suppression of exciton quenching, the DBP and C70-based M-i-n photovoltaic cells show a remarkable PCE of 7.04% under illumination with 100 mW/cm2, AM 1.5G simulated solar light.  相似文献   
78.
We investigate the efficiency of periodic dynamical decoupling of an exciton qubit confined in a self-assembled quantum dot in the presence of an applied electric field. The shape of the quantum dot is found to have a large effect on the excitonic dephasing. It is shown that dynamical suppression of dephasing, through a simple series of equally spaced bit flips, is most efficient for quantum dots that are close to spherical. In addition, compared to the no field case, the presence of an electric field increases the efficiency of the decoupling technique as the quantum dot becomes more oblate. Our calculations show that dephasing can be significantly suppressed in GaAs/AlAs quantum dots suitable for quantum information processing.  相似文献   
79.
Co-doping of a blue phosphorescent emitter in a thermally activated delayed fluorescent (TADF) emitter based emitting layer was developed as an approach to extend the lifetime of blue TADF devices by managing excitons and polarons in the emitting layer. The blue phosphorescent emitter was doped at a very low doping concentration below 1 wt% to suppress triplet-triplet and triplet-polaron quenching effect in the TADF emitting layer. The doping of the blue phosphorescent emitter led to great extension of the lifetime of the TADF devices by hole trapping effect of the blue triplet emitter which widened exciton formation zone in the TADF emitting layer. More than twice extension of the operational lifetime of the device was demonstrated by the co-doping approach irrespective of the doping concentration of the TADF emitter in the emitting layer.  相似文献   
80.
Ternary blend films, obtained by introducing a third component (a second acceptor as the third component) to a binary polymer solar cell (PSC), are a promising ternary strategy because the light absorption range, surface morphology, and charge carrier transport of the photoactive layer may be optimized, as can the energy level alignment between the donor and the acceptor. In this work, acceptors such as the short-wavelength-absorption polymer N2200 and the long-wavelength-absorption small molecule FOIC were combined with the donor PBDB-T-2F to construct ternary blends. The optimized ternary PSC could achieve a power conversion efficiency (PCE) of 13.98%, which is higher than the efficiencies of binary PSCs based on PBDB-T-2F:FOIC (12.65%) and PBDB-T-2F:N2200 (9.36%). The enhanced PCE of the ternary PSC is based on the high electron mobility, balanced charge transport, optimized surface morphology and charge carrier kinetics and the extended light absorption of the ternary photoactive layer, realized by adjusting the ratio of FOIC:N2200. Our results indicate that mixing a polymer acceptor into a binary photoactive layer to form a ternary blend photoactive layer is a valuable strategy for improving photovoltaic performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号