首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   25篇
  国内免费   26篇
电工技术   5篇
综合类   4篇
化学工业   115篇
金属工艺   12篇
机械仪表   1篇
矿业工程   6篇
能源动力   35篇
轻工业   10篇
石油天然气   6篇
武器工业   1篇
无线电   33篇
一般工业技术   35篇
冶金工业   6篇
原子能技术   1篇
自动化技术   3篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   11篇
  2020年   7篇
  2019年   12篇
  2018年   7篇
  2017年   7篇
  2016年   15篇
  2015年   8篇
  2014年   15篇
  2013年   10篇
  2012年   16篇
  2011年   26篇
  2010年   15篇
  2009年   14篇
  2008年   13篇
  2007年   12篇
  2006年   17篇
  2005年   10篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1984年   1篇
排序方式: 共有273条查询结果,搜索用时 268 毫秒
21.
The porous structure and electrochemical double layer capacitance of porous carbons prepared from rice husks by using alkali hydroxide as activating agents were investigated. Three samples of carbons prepared by NaOH-activation, three samples prepared by KOH-activation and two samples of commercial carbons have been studied. The porosity of the carbons was characterized by nitrogen adsorption isotherms at 77 K and electrochemical constant current cycling method was used to measure the double layer capacitance. The specific capacitance of the carbons is not linearly proportional to the surface area. Additionally, the double layer capacitance strongly depends on the pore structure and the functional groups. A specific capacitance larger than 200 F g−1 was achieved by using the porous carbon prepared with NaOH (activation temperature: 750 °C; activation time: 30 min). All the carbons prepared with rice husk in this study have larger double layer capacitance (125–210 F g−1) than the commercial grade carbons (78–100 F g−1).  相似文献   
22.
微反射镜和光纤自对准V型槽的制作   总被引:2,自引:1,他引:1  
用纯KOH水溶液和KOH +IPA混合水溶液在 ( 1 0 0 )硅片上沿 <1 0 0 >方向上腐蚀所暴露的平面是不同的。纯KOH水溶液中总是能暴露与衬底垂直的 {1 0 0 }面 ,在KOH +IPA溶液中 ,随着KOH的浓度不同将暴露 {1 1 0 }和 {1 0 0 }面。使用KOH浓度为 50 %的KOH +IPA溶液 ,在 ( 1 0 0 )硅片上一次掩模制作微反射镜和光纤自对准V型槽 ,微镜的表面粗糙度低于 1 0nm。  相似文献   
23.
Ageing of Ti1.02−xZrxNi0.98 (0 ≤ x ≤ 0.48) compounds during the electrochemical cycling in aqueous KOH electrolyte has been investigated. Microstructural and chemical characterisation, mostly conducted by transmission electron microscopy, show that for all electrodes their activation results from calendar KOH corrosion. After activation, Zr substituted compounds attain much higher capacity (∼350 mAh g−1) than the binary TiNi compound (∼150 mAh g−1) but their cycle-life is poor. The mechanism of electrode degradation differs for the binary and the substituted compounds. For TiNi, degradation is due to KOH corrosion whereas, for substituted compounds, it mainly results from the loss of electrical contact due to particle pulverisation. For all electrodes, KOH corrosion produces a double surface layer formed by an inner two-phase (Ni-NiO) nanocrystalline layer and an outer (Ti,Zr)O2 amorphous layer.  相似文献   
24.
以活性碳纤维(ACF)电极为研究对象,用质量分数为0.2的氢氧化钾(KOH)作为电解液制作KOH-ACF浸渍电极,研究了浸泡时间、搅拌、真空度、温度等的影响因素,目的使电解液能更有效的进入ACF电极,研究发现,浸泡时间长、真空度高和温度低都有利于电解液进入电极,搅拌可以加快浸泡吸附的速度,制成的双电层电容器比电容可达70F/g。  相似文献   
25.
26.
Direct ethanol fuel cells (DEFCs) emerge as the new research energy field since fast production of electricity, high efficiency conversion, and simple fabrication process. The production cost, conductivity properties, and ethanol permeability of membrane were the main problem that limited the DEFC performance and commercialization. In this study, a low cost, good ionic conductivity and low ethanol permeability of an anion exchange membrane based on incorporation KOH‐doped quaternized poly(vinyl alcohol) (QPVA) membrane (designed as QPVA/KOH) is synthesized and cross‐linked with glutaraldehyde solution. The membrane is expected to cut the production cost and enhance the performance. In this work, an optimum of alkali‐doped concentration has influence the membrane performance. The membrane has reveal high chemical stability even doped with 8‐M KOH solution in 100°C. The morphology of membranes remained unbreakable and achieved high range of ionic conductivity (~10?2 S cm?1). The membranes present maximum ionic conductivity 1.29 × 10?2 S cm?1 at 30°C and 3.07 × 10?2 S cm?1 at 70°C. The ethanol permeability of membrane is lower compared with the commercial membranes. Power density of alkaline DEFCs with platinum‐based catalyst by using cross‐linked QPVA/KOH membrane is 5.88 mW cm?2, which is higher than commercial membranes at 30°C temperature. At 70°C, power density has increased up to 11.28 mW cm?2 and significantly increased up to 22.82 mW cm?2 via the nonplatinum‐based catalyst. Moreover, according to the durability test, the performance of passive alkaline DEFC by using cross‐linked QPVA/KOH membrane has maintained at 36.2% level. With such efficiency, the stack current density has been able to stay above 120 mA cm?2 for over 1000 hours, at 70°C.  相似文献   
27.
关键词:金红石矿;深度还原;配碳比;KOH;K2CO3  相似文献   
28.
29.
采用KOH溶液湿法腐蚀制作阵列光开关的微反射镜上电极.腐蚀表面的不平整影响了光开关的驱动扭臂结构的制作.采用合理配比的HF,HNO3和CH3COOH腐蚀剂对制作的微反射镜阵列硅片进行抛光处理,抛光后微反射镜表面和腐蚀的(110)面均有较大的改善,并且抛光不影响器件的结构,最后制作出了均匀一致的光开关阵列扭臂驱动结构.  相似文献   
30.
In this study, the effect of surface activation of multi-walled carbon nanotubes (MWCNTs) by KOH along with loading of cobalt and lithium nanoparticles on the surface of MWCNTs are investigated. In the first step, surface activation parameters, i.e. MWCNT/KOH weight ratio, activation temperature, and activation time are optimized to give the highest hydrogen uptake. According to obtained results, the optimum synthesis conditions are MWCNT/KOH weight ratio of 1:5, 800 °C, and 1 h of activation duration. Afterward, cobalt and lithium metal nanoparticles are doped discretely on the surface of activated nanotubes. It is demonstrated that amounts of loaded cobalt and lithium metals are 5.5 and 1.9% wt, respectively. In addition, it is revealed that the amount of hydrogen storage capacity for cobalt-loaded and lithium-loaded MWCNTs are 1.06% wt. and 1.33% wt., respectively (at 278 K) which are higher than the capacity of pristine and activated MWCNT samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号