首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27367篇
  免费   2038篇
  国内免费   870篇
电工技术   414篇
技术理论   1篇
综合类   926篇
化学工业   8083篇
金属工艺   1877篇
机械仪表   1074篇
建筑科学   736篇
矿业工程   418篇
能源动力   1214篇
轻工业   4731篇
水利工程   408篇
石油天然气   977篇
武器工业   74篇
无线电   2480篇
一般工业技术   4709篇
冶金工业   841篇
原子能技术   790篇
自动化技术   522篇
  2025年   187篇
  2024年   537篇
  2023年   590篇
  2022年   716篇
  2021年   953篇
  2020年   988篇
  2019年   983篇
  2018年   874篇
  2017年   1016篇
  2016年   1103篇
  2015年   972篇
  2014年   1420篇
  2013年   1745篇
  2012年   1714篇
  2011年   2116篇
  2010年   1415篇
  2009年   1503篇
  2008年   1349篇
  2007年   1375篇
  2006年   1234篇
  2005年   981篇
  2004年   904篇
  2003年   841篇
  2002年   754篇
  2001年   559篇
  2000年   484篇
  1999年   447篇
  1998年   385篇
  1997年   303篇
  1996年   289篇
  1995年   252篇
  1994年   218篇
  1993年   170篇
  1992年   192篇
  1991年   129篇
  1990年   105篇
  1989年   89篇
  1988年   64篇
  1987年   43篇
  1986年   34篇
  1985年   57篇
  1984年   57篇
  1983年   31篇
  1982年   34篇
  1981年   16篇
  1980年   13篇
  1979年   5篇
  1978年   5篇
  1976年   10篇
  1975年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
激光遥测甲烷气体最低可探测浓度   总被引:2,自引:1,他引:2  
对一种使用单一激光源遥感检测甲烷方案的最低可探测的路径-积分浓度进行了理论分析和实验研究,该方案主要采用了频率调制及谐波探测技术。通过理论计算得出了最低可探测甲烷的路径-积分浓度大约为8.7×10-8m。实验中测得该探测系统的探测灵敏度为8.43×10-6m/mV,甲烷最低可探测路径-积分浓度为4.2×10-7m。结果表明该探测系统具有较高的探测灵敏度,完全满足对矿井瓦斯的实时监测要求。  相似文献   
82.
Microspectrometers based on the monolithic integration of a microelectromechanical system (MEMS) Fabry–Pérot filter and a Hg x Cd1–x Te-based infrared detector are discussed and measured results presented. The microspectrometers are designed to operate in the 1.5 μm to 2.6 μm wavelength range. Design equations are presented which account for the mechanical and optical characteristics of the device. Measurements indicate linewidths as narrow as 55 nm, switching times of 40 μs, and a tuning range of 380 nm, which is limited by snap-down. Optical characterization of the distributed Bragg mirrors and the Fabry–Pérot filter are presented, and these are shown to be in good agreement with simple first-order analytical models. Bowing of the movable Fabry–Pérot mirror due to stress gradients is identified as the dominant source of linewidth broadening.  相似文献   
83.
Deep-level transient spectroscopy (DLTS) measurements were carried out on low-doped n-silicon before and after irradiation with 5.48 MeV α particles at room temperature with a fluence of 1010 α particles/cm2. The DLTS measurements on the samples identified three electron levels E1, E2 and E3 before irradiation. The deep-levels characteristic studies include emission rate signatures, activation energies, defect concentrations and capture cross sections. It was found that all pre-existing defects decreased their amplitudes during irradiation. The decrease in activation energy of level E3 and noticeable suppression of level E1 was also observed after irradiation. It was clearly seen that the composite peak E3 (combination of E2 and E3) was successfully resolved after irradiating with α particles. α-irradiation is seen to lead a significant suppression of the iron interstitial defect, and without causing any change in its room temperature annealing characteristics.  相似文献   
84.
This paper extends the timing test model in [5] to be more realistic by including the effects of the test fixtures between a device under test and a tester. The paper enables analyzing the trade-offs that arise between the predicted yield and the required overall test environment timing accuracy (OTETA) which involves the tester overall timing accuracy (OTA) and the test fixtures' impacts. We specifically focus on the application of the extended model to predict the test yield of standard high-speed interconnects, such as PCI Express, Parallel/Serial RapidIO, and HyperTransport. The extended model reveals that achieving an actual yield of 80% with a test escape of 300 DPM (Defects Per Million) requires an equivalent OTETA that is about half the acceptable absolute limit of the tested parameter. Baosheng Wang received his B.S. degree from Beijing University of Aeronautics and Astronautics (BUAA), Beijing, P.R. China, in 1997 and M.S. degree from Precision Instrument & Mechanical Engineering from the Tsinghua University, Beijing, P. R. China in 2000. In 2005, he received his Ph.D. degree in Electrical Engineering from the University of British Columbia (UBC), Vancouver, BC, Canada. During his Master study, he was doing MEMS, Micro Sensors and Digital Signal processing. From 2000 to 2001, he worked in Beijing Gaohong Telecommunications Company as a hardware engineer in ATM technology. Currently, he is a Design-for-Test (DFT) engineer at ATI Technologies Inc., Markham, Ontario, Canada. He publishes widely at international conferences and journals. His primary research interests are time-driven or timing-oriented testing methodologies for System on-a-Chip (SoC). These fields include test time reduction for SRAMs, accelerated reliability test for non-volatile memories, yield analysis for SoC timing tests, SoC path delay timing characterization and embedded timing measurements. Andy Kuo is currently a Ph.D student of System on a Chip (SoC) Research Lab at the Department of Electrical and Computer Engineering, University of British Columbia. He received his M.A.Sc. and B.A.Sc in electrical and computer engineering from University of British Columbia and University of Toronto in 2004 and 2002 respectively. His research interests include high-speed signal integrity issues, jitter measurement, serial communications. Touraj Farahmand received the B.Sc. degree in Electrical Engineering from Esfahan University of Technology, Esfahan, Iran in 1989 and the M.Sc. in Control Engineering from Sharif university of Technology, Tehran, Iran in 1992. After graduation, he joined the Electrical and Computer Research center of Esfahan University of Technology where he was involved in the DSP algorithm development and design and implementation of the control and automation systems. Since October 2001, he has been working in the area of high-speed signal timing measurement at SoC (System-on-a-Chip) lab of UBC (University of British Columbia) as a research engineer. His research interests are signal processing, jitter measurement, serial communication and control. André Ivanov is Professor in the Department of Electrical and Computer Engineering, at the University of British Columbia. Prior to joining UBC in 1989, he received his B.Eng. (Hon.), M. Eng., and Ph.D. degrees in Electrical Engineering from McGill University. In 1995–96, he spent a sabbatical leave at PMC-Sierra, Vancouver, BC. He has held invited Professor positions at the University of Montpellier II, the University of Bordeaux I, and Edith Cowan University, in Perth, Australia. His primary research interests lie in the area of integrated circuit testing, design for testability and built-in self-test, for digital, analog and mixed-signal circuits, and systems on a chip (SoCs). He has published widely in these areas and holds several patents in IC design and test. Besides testing, Ivanov has interests in the design and design methodologies of large and complex integrated circuits and SoCs. Dr. Ivanov has served and continues to serve on numerous national and international steering, program, and/or organization committees in various capacities. Recently, he was the Program Chair of the 2002 VLSI Test Symposium (VTS'02) and the General Chair for VTS'03 and VTS'04. In 2001, Ivanov co-founded Vector 12, a semiconductor IP company. He has published over 100 papers in conference and journals and holds 4 US patents. Ivanov serves on the Editorial Board of the IEEE Design and Test Magazine, and Kluwer's Journal of Electronic Testing: Theory and Applications. Ivanov is currently the Chair of the IEEE Computer Society's Test Technology Technical Council (TTTC). He is a Golden Core Member of the IEEE Computer Society, a Senior Member of the IEEE, a Fellow of the British Columbia Advanced Systems Institute and a Professional Engineer of British Columbia. Yong Cho received the B.S. degree from Kyung Pook National Unviersity, Korea, in 1981 and the M.S. degree from in electrical and computer engineering from the University of South Carolina, Columbia, S.C., in 1988 and the Ph.D. degree in electrical engineering and applied physics from Case Western Reserve University, Cleveland, OH, in 1992. He is currently a Professor with the Department of Electronics Engineering, Konkuk University, Seoul, Korea. His recent research interests include SoC Design and Verification, H/W and S/W co-design, and embedded programming on SoC. Sassan Tabatabaei received his PHD in Electrical Engineering from the University of British Columbia, Vancouver, Canada in 2000. Since then, he has held several senior technical positions at Vector12 Corp, Guide Technology, and Virage Logic. His professional and research interests include mixed-signal design and test, and signal integrity and jitter test methodologies for high-speed circuits and multi-Gbps serial interfaces. He has published several papers and holds a US patent in the area of timing and jitter measurement. Currently, he holds the position of the director for embedded test at Virage Logic Corporation.  相似文献   
85.
86.
Biomass estimation was carried out for even-aged stands of Gmelina arborea and Nauclea diderrichii in Akure forest reserve. Linear and allometric regression equations for biomass prediction were developed for trees of both species. The yield of each species and total above-ground biomass (TAGB) were estimated and compared. The various equations developed were assessed based on high coefficient of determination (R2), significant F-ratio, and small Furnival index (FI) to select appropriate equation for prediction. The t-test shows a significant difference when the total volume and total dry weight of both species were compared, Gmelina arborea having a greater value than Nauclea diderrichii in both cases. The total volume of Gmelina arborea per hectare was 721.40 m3 and 265.18 m3 for Nauclea diderrichii. The TAGB for Gmelina arborea was 264,762 kg/ha and 88,293 kg/ha for Nauclea diderrichii.  相似文献   
87.
A novel black coloured coating with the composition CuCoMnOx was prepared using sol–gel synthesis. The coatings were deposited using the dip-coating technique from alcoholic sols based on Mn-acetate and Co- and Cu-chloride precursors. Thermogravimetric analysis showed that xerogels become crystalline at 316°C while X-ray diffraction analysis revealed that the coatings and powders correspond predominantly to CuCoMnOx spinels. Rutherford back scattering (RBS) and transmission electron microscopic (TEM) studies combined with energy dispersive X-ray spectroscopy (EDXS) measurements confirmed that Cu, Mn and Co are present in the films in stoichiometric ratios close to that in the initial sols. IR spectroscopy has been employed to study the formation of sols by following the changes in the vibrational bands of the acetate groups during both thermal hydrolysis and the ageing of sols to xerogels. It was found that ageing of xerogels was accompanied by the formation of −COO bridging units, which at 250°C are no longer visible in the IR spectra but substituted by the vibrational modes characteristic for CuCoMnOx. The solar absorptance (as) and thermal emittance (eT) of the coatings when deposited on an Al-substrate are as=0.9 and eT=0.05, which rank deposited black sol–gel CuCoMnOx spinels among the promising candidates for spectrally selective absorber coatings for solar collectors and solar facades.  相似文献   
88.
89.
Large-area and homogeneous single-walled carbon nanotube (SWCNT) films have been deposited via arc discharge directly on glass substrate coated with a layer of indium tin oxide film. The characterization, by means of electron microscopy and Raman spectroscopy, shows that the as-grown films are uniformly woven and consist of SWCNT with diameters ranging from 0.82 to 1.15 nm. As a cathode material, the field emission test indicates the films have low turn-on field of ∼1.2 V/μm at 10 μA/cm2 emission current, and high emission intensity causing luminance of about 7000 cd/cm2 with fine uniformity. The best performing sample exhibits a constant degradation of less than 3% per hour at an emission current of around 1 mA. Measuring with the high voltage (2000 V) on the films for 2.0 h increased the field enhancement factor from 4500 to 5400 at the high field region. The results are of significance to the development of field emission display using nanoemitters.  相似文献   
90.
Synthesis by reverse micelles was used to produce NiMn2−xFexO4 with nanometric particle sizes for their use as conversion anode materials for lithium ion batteries. The hydroxide precursor was characterized by infrared spectroscopy and the decomposition was followed by thermal analysis. Cation distribution in the spinel structure of pristine samples was evaluated by Mössbauer spectroscopy evidencing that octahedral Fe3+ is substituted by Mn3+ ions in NiMnFeO4. Capacity values of 750 mA h g−1 were retained for 50 cycles for NiMnFeO4 and NiFe2O4, respectively. A good kinetic response was observed in NiMnFeO4 at 2C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号