首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1886篇
  免费   144篇
  国内免费   215篇
电工技术   33篇
综合类   50篇
化学工业   179篇
金属工艺   53篇
机械仪表   196篇
建筑科学   21篇
矿业工程   8篇
能源动力   263篇
轻工业   3篇
水利工程   3篇
石油天然气   11篇
武器工业   1篇
无线电   795篇
一般工业技术   355篇
冶金工业   9篇
原子能技术   8篇
自动化技术   257篇
  2024年   18篇
  2023年   107篇
  2022年   73篇
  2021年   84篇
  2020年   60篇
  2019年   74篇
  2018年   53篇
  2017年   83篇
  2016年   80篇
  2015年   86篇
  2014年   100篇
  2013年   114篇
  2012年   101篇
  2011年   154篇
  2010年   85篇
  2009年   127篇
  2008年   89篇
  2007年   90篇
  2006年   101篇
  2005年   68篇
  2004年   48篇
  2003年   52篇
  2002年   61篇
  2001年   30篇
  2000年   47篇
  1999年   24篇
  1998年   44篇
  1997年   32篇
  1996年   27篇
  1995年   28篇
  1994年   23篇
  1993年   14篇
  1992年   12篇
  1991年   10篇
  1990年   12篇
  1989年   20篇
  1988年   2篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有2245条查询结果,搜索用时 15 毫秒
41.
[6,6]‐phenyl‐C‐61‐butyric acid methyl ester (PCBM) and poly(3‐hexylthiophene) (P3HT) are the most widely used acceptor and donor materials, respectively, in polymer solar cells (PSCs). However, the low LUMO (lowest unoccupied molecular orbital) energy level of PCBM limits the open circuit voltage (Voc) of the PSCs based on P3HT. Herein a simple, low‐cost and effective approach of modifying PCBM and improving its absorption is reported which can be extended to all fullerene derivatives with an ester structure. In particular, PCBM is hydrolyzed to carboxylic acid and then converted to the corresponding carbonyl chloride. The latter is condensed with 4‐nitro‐4’‐hydroxy‐α‐cyanostilbene to afford the modified fullerene F . It is more soluble than PCBM in common organic solvents due to the increase of the organic moiety. Both solutions and thin films of F show stronger absorption than PCBM in the range of 250–900 nm. The electrochemical properties and electronic energy levels of F and PCBM are measured by cyclic voltammetry. The LUMO energy level of F is 0.25 eV higher than that of PCBM. The PSCs based on P3HT with F as an acceptor shows a higher Voc of 0.86 V and a short circuit current (Jsc) of 8.5 mA cm?2, resulting in a power conversion efficiency (PCE) of 4.23%, while the PSC based on P3HT:PCBM shows a PCE of about 2.93% under the same conditions. The results indicate that the modified PCBM, i.e., F , is an excellent acceptor for PSC based on bulk heterojunction active layers. A maximum overall PCE of 5.25% is achieved with the PSC based on the P3HT: F blend deposited from a mixture of solvents (chloroform/acetone) and subsequent thermal annealing at 120 °C.  相似文献   
42.
Constructing heterojunction provides a promising tactic to improve the photocatalytic efficiency of catalysts. In this paper, hierarchical FeIn2S4/BiOBr heterostructure photocatalysts were prepared by facile two step methods and applied to effectively remove ciprofloxacin (CIP) and tetracycline (TC) under visible light. Compared to single catalyst, FeIn2S4/BiOBr hybrids display significantly improved photocatalytic activity. Among the series, 6 wt% FeIn2S4/BiOBr shows the optimal photocatalytic performance, where the degradation efficiencies of TC and CIP are 3.15 and 2.88 times greater than pure BiOBr, respectively. Such an improvement could arise from the S-scheme heterojunctions and unique hierarchical structures, which brings stronger light absorption, higher photoexcited charge separation efficiency and superior redox ability. Furthermore, 6 wt% FeIn2S4/BiOBr composite exhibits excellent stability and reusability. Radical capture experiments and EPR analyses uncover that O2, h+ and OH are primarily reactive substances during photocatalytic removal of TC. The products of TC were detected by LC-MS analyses and possible decomposition paths are proposed. Eventually, a possible photodegradation mechanism over FeIn2S4/BiOBr S-scheme heterojunction is proposed. These findings supply new perspective for the simple synthesis of S-scheme photocatalysts with promising applications in environment remediation.  相似文献   
43.
This paper presents a novel system for production of pure oxygen based on the integration of a solid oxide fuel cell (SOFC) and a solid oxide electrolyzer (SOEC). In the proposed arrangement, the SOFC provides electricity, heat and H2O in vapour phase to the SOEC which carries out the inverse reactions of the SOFC, that is the separation of H2O into H2 (used as a fuel for the SOFC) and O2 (representing the yield of the system). Simulations carried out in different operating conditions show that when the integrated SOFC–SOEC device runs at low current densities (less than 1000 A m−2), pure oxygen can be generated with an electric consumption comparable to mid-size cryogenic air separation units, and significantly lower than small scale systems based on the PSA technology.  相似文献   
44.
A versatile phase transformation strategy was proposed to synthesize novel BiVO4 nanosheets (NSs)@WO3 nanorod (NR) and nanoplate (NP) arrays films. The strategy was carried out by following a three-step hydrothermal process (WO3→WO3/Bi2WO6→WO3/BiVO4). According to the characterization results, plenty of BiVO4 NSs grew well on the surface of WO3 NR and NP arrays films, thus forming the WO3/BiVO4 heterojunction structure. The prepared WO3/BiVO4 heterojunction films were used as the photoanodes for the photoelectrochemical (PEC) water splitting. As indicated by the results, the photoanodes exhibited an excellent PEC activity. The photocurrent densities of the WO3/BiVO4 NR and NP photoanodes at 1.23 V (vs RHE) without cocatalyst under visible light illumination reached up to about 1.56 and 1.20 mA/cmbrespectively.  相似文献   
45.
46.
47.
This article reports spin coating and hydrothermal approaches to the synthesis of Cu2O seed layer−ZnO and Cu2O film−ZnO heterojunction films on fluorine-doped tin oxide substrates. Cu2O seed layers and an ethylene glycol (EG) reducing agent were employed to obtain pure, uniform, and adhesive Cu2O films on the substrate. Transmission electron microscopy validated the heterojunctions with clear interfaces between each component on the p-Cu2O film−n-ZnO (with EG) sample, the conductive types of which were determined through Mott−Schottky measurements. Constructed energy band diagrams supported the Mott−Schottky result, manifesting favorable conduction band positions for the generation of •O2 radicals for all constituent materials and indicating smooth charge carrier transport for the p-Cu2O film−n-ZnO (with EG) sample. Furthermore, abundant p−n junction interfaces synergistically enabled the sample to exhibit the most satisfactory photodegradation capability (rate constant ≈ 8.9 × 10−3 min−1), which was attributable to the predominance of •OH radicals. The sample's rectifying (diode) behavior with a ratio of the current density (J) at +3 V (forward bias) to that at −3 V (reverse bias) of approximately 27 was observed without ultraviolet illumination. Moreover, the J at −3 V is under illumination approximately 80 times that without illumination, implying the suitability of the sample for UV detectability.  相似文献   
48.
The present contribution aims at determining the impact of modifying the properties of the absorber/buffer layer interface on the electrical performance of Cu2ZnSnSe4 (CZTSe) thin‐film solar cells, by using a Cd2+ partial electrolyte (Cd PE) treatment of the absorber before the buffer layer deposition. In this work, CZTSe/CdS solar cells with and without Cd PE treatment were compared with their respective Cu(In,Ga)Se2 (CIGSe)/CdS references. The Cd PE treatment was performed in a chemical bath for 7 min at 70 °C using a basic solution of cadmium acetate. X‐ray photoemission spectroscopy measurements have revealed the presence of Cd at the absorber surface after the treatment. The solar cells were characterized using current density–voltage (J–V), external quantum efficiency, and drive‐level capacitance profiling measurements. For the CZTSe‐based devices, the fill factor increased from 57.7% to 64.0% when using the Cd PE treatment, leading to the improvement of the efficiency (η) from 8.3% to 9.0% for the best solar cells. Similar observations were made on the CIGSe solar cell reference. This effect comes from a considerable reduction of the series resistance (RS) of the dark and light J–V, as determined using the one‐diode model. The crossover effect between dark and light J–V curves is also significantly reduced by Cd PE treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
49.
Two-dimensional (2D) SnS2/MoS2 heterojunction with a 2D/2D novel structure was used as electrode material for enhanced supercapacitor performance. Compared with the sole SnS2, the as-prepared 2D/2D SnS2/MoS2 layered heterojunction has exhibited great improvement in supercapacitor properties. This novel structure can effectively prevent agglomeration and stacking in electrochemical process, and 2D/2D structure is beneficial to intercalation and desorption of ions in electrochemical processes. The experiment result shows that MoSn5 (samples with 5% MoSn5 mole ratios) display a specific capacitance of 466.6 F/g at the current density of 1 A/g in 0.5 mol/L potassium hydroxide solution, an impressive cycling stability with 88.2% capacitance retention at current density of 4 A/g. In addition, the as-fabricated symmetric supercapacitor exhibited high energy density of 115 Wh kg−1 at the power density of 2230 Wh kg−1. This work provides a fundamental investigation of 2D/2D layered material synergistic effect on the electrochemical process.  相似文献   
50.
《Ceramics International》2020,46(7):8949-8957
Efficient removal of tetracycline (TC) under visible-light irradiation over TiO2-based photocatalysts remains a challenge based on the fact that the reported photocatalytic systems still suffer from weak visible-light absorption and/or inefficient charge separation. Herein, we constructed {101} and {001} facets co-exposed TiO2 hollow sphere (001-HT) via a gentle NaF treatment, in which the hollow mesoporous feature can trap incident light for a long time to improve photons efficiently. Meanwhile, the as-formed facet heterojunction significantly facilitates the charge separation. As a result, the 001-HT exhibits a high removal rate (~90.1%) of TC under visible-light irradiation, beyond the values of many reported TiO2-based photocatalysts. Most importantly, we further expound the ligand-to-metal charge transfer mechanism towards TiO2-assisted degradation of TC under visible-light irradiation, which effectively clarifies the confusion about the origin of pure TiO2 visible-light activity towards TC degradation because both TiO2 and TC do not exhibit any visible-light catalytic activity. Therefore, this work provides a new insight in revealing the mechanism of visible-light-mediated TC degradation over pure TiO2 photocatalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号