首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   6篇
  国内免费   4篇
电工技术   9篇
化学工业   1篇
建筑科学   3篇
矿业工程   1篇
能源动力   1篇
轻工业   3篇
无线电   29篇
自动化技术   6篇
  2023年   4篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
排序方式: 共有53条查询结果,搜索用时 672 毫秒
21.
Quantum-dot cellular automata (QCA) technology has been widely considered as an alternative to complementary metal-oxide-semiconductor (CMOS) due to QCA’s inherent merits.Many interesting QCA-based logic circuits with smaller feature size,higher operating frequency,and lower power consumption than CMOS have been presented.However,QCA is limited in its sequential circuit design with high performance flip-flops.Based on a brief introduction of QCA and dual-edge triggered (DET) flip-flop,we propose two original QCA-based D and JK DET flip-flops,offering the same data throughput of corresponding single-edge triggered (SET) flip-flops at half the clock pulse frequency.The logic functionality of the two proposed flip-flops is verified with the QCADesigner tool.All the proposed QCA-based DET flip-flops show higher performance than their SET counterparts in terms of data throughput.Furthermore,compared with a previous DET D flip-flop,the number of cells,covered area,and time delay of the proposed DET D flip-flop are reduced by 20.5%,23.5%,and 25%,respectively.By using a lower clock pulse frequency,the proposed DET flip-flops are promising for constructing QCA sequential circuits and systems with high performance.  相似文献   
22.
This paper proposes a novel design paradigm for circuits designed in quantum dot cellular automata (QCA) technology. Previously reported QCA circuits in the literature have generally been designed in a single layer which is the main logical block in which the inverter and majority gate are on the base layer, except for the parts where multilayer wire crossing was used. In this paper the concept of multilayer wire crossing has been extended to design logic gates in multilayers. Using a 5-input majority gate in a multilayer, a 1-bit and 2-bit adder have been designed in the proposed multilayer gate design paradigm. A comparison has been made with some adders reported previously in the literature and it has been shown that circuits designed in the proposed design paradigm are much more efficient in terms of area, the requirement of QCA cells in the design and the input-output delay of the circuit. Over all, the availability of one additional spatial dimension makes the design process much more flexible and there is scope for the customizability of logic gate designs to make the circuit compact.  相似文献   
23.
朱宏莉  林智敏 《建筑经济》2020,41(2):115-121
通过文献分析,以各省市社会经济发展状况为契合点,提取出影响地区装配式建筑发展的5个前因条件因素。以24个省级行政区为样本,应用清晰集定性比较分析方法(csQCA)对各地区装配式发展模式进行探索。最后,验证装配式建筑发展影响因素与其发展状况之间存在非对称因果关系,全国大力发展装配式建筑是可行的,各地区在制定发展装配式建筑政策体系时应该有所侧重。  相似文献   
24.
《Microelectronics Journal》2015,46(6):519-530
In the present scope, new design methodologies for reversible flip flops are proposed and the results are analyzed by the QCADesigner tool. To the best of our knowledge such methodologies are reported for the first time in the literature. In this paper, we provide few formalisms also. The first one is for the system energy derived using Hamiltonian paradigm and provides internal energy of cell electrons. The second formalism provides the minimum energy requirement for execution of a QCA architecture. This procedure reduces wastage of clock energy. Two very interesting parameters are identified playing crucial role in this context: (i) The electron quantum number n which indicates quantum energy level and (ii) intermediate quantum number for an electron lying between 1 and (n−1). It is established that the incident energy frequency is directly proportional to the number of cells and quadratic function of electron quantum number and intermediate quantum number. The dissipated energy frequency is also directly proportional to the product of number of cells and quadratic function of electron quantum number. This paper, reports some remarkable results. The relaxation time is observed being inversely proportional to the product of number of cells in the architecture and quadratic function of quantum number as well as intermediate quantum number. Apart from these, differential frequency is found directly proportional to the number of cells in the architecture and quadratic function of intermediate quantum number. Few major observations are also indicated: (i) There is always a probability of reflection even if the system energy exceeds barrier energy. (ii) On the contrary, there is always a probability of transmission even though system energy is dominated by the barrier energy.  相似文献   
25.
Quantum-dot cellular automata (QCA) is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor (CMOS) technology. The existence of defects cannot be ignored, considering the fabrication of QCA devices at the molecular level where it could alter the functionality. Therefore, defects in QCA devices need to be analyzed. So far, the simulation-based displacement defect analysis has been presented in the literature, which results in an increased demand in the corresponding mathematical model. In this paper, the displacement defect analysis of the QCA main primitive, majority voter (MV), is presented and carried out both in simulation and mathematics, where the kink energy based mathematical model is applied. The results demonstrate that this model is valid for the displacement defect in QCA MV.  相似文献   
26.
Quantum‐dot cellular automata (QCA) is one of the proposed nanotechnologies in the electronics industry, which offers a new construction for scheming digital circuits with less energy consumption on the nanoscale and possibly can be an appropriate replacement of complementary metal‐oxide semiconductor (CMOS) technology. Nanocommunication in QCA has attracted a wide range of researcher's attention. However, there is still a broad scope to design QCA‐based architecture for nanocommunication. The multiplexer is hugely used in the telecommunication system and transmits multiple data at the same time. Therefore, in this paper, a useful structure to implement a 2 to 1 multiplexer based on the novel XOR gate is presented and is used as a module to implement the 4 to 1 and 8 to 1 multiplexers. Simulations using QCADesigner tool are done to check the performance of the suggested designs. The 2 to 1, 4 to 1, and 8 to 1 QCA multiplexer structures utilize 22, 92, and 260 cells and consume 0.03, 0.12, and 0.40 μm2 of area, respectively. They have shown that the suggested designs have stable and applicable structures regarding area, cost, and complexity.  相似文献   
27.
The advent of development of high-performance, low-power digital circuits is achieved by a suitable emerging nanodevice called quantum-dot cellular automata(QCA). Even though many efficient arithmetic circuits were designed using QCA, there is still a challenge to implement high-speed circuits in an optimized manner. Among these circuits, one of the essential structures is a parallel multi-digit decimal adder unit with significant speed which is very attractive for future environments. To achieve high speed, a new correction logic formulation method is proposed for single and multi-digit BCD adder. The proposed enhanced single-digit BCD adder(ESDBA) is 26% faster than the carry flow adder(CFA)-based BCD adder. The multi-digit operations are also performed using the proposed ESDBA, which is cascaded innovatively. The enhanced multi-digit BCD adder(EMDBA) performs two 4-digit and two 8-digit BCD addition 50% faster than the CFA-based BCD adder with the nominal overhead of the area. The EMDBA performs two 4-digit BCD addition 24% faster with 23% decrease in the area, similarly for 8-digit operation the EMDBA achieves 36% increase in speed with 21% less area compared to the existing carry look ahead(CLA)-based BCD adder design. The proposed multi-digit adder produces significantly less delay of(N-1)+3.5 clock cycles compared to the N*One digit BCD adder delay required by the conventional BCD adder method. It is observed that as per our knowledge this is the first innovative proposal for multi-digit BCD addition using QCA.  相似文献   
28.
Mass spectrometric methods were developed and validated for the analysis in chicken muscle of a range of antibiotic growth promoters: spiramycin, tylosin, virginiamycin and bacitracin, and separately for two marker metabolites of carbadox (quinoxaline-2-carboxylic acid and 1,4-bisdesoxycarbadox), and a marker metabolite of olaquindox (3-methyl-quinoxaline-2-carboxylic acid). The use of these compounds as antibiotic growth promoters has been banned by the European Commission. This study aimed to develop methods to detect their residues in muscle samples as a means of checking for the use of these drugs during the rearing of broiler chickens. When fed growth-promoting doses for 6 days, spiramycin (31.4?µg?kg?1), tylosin (1.0?µg?kg?1), QCA (6.5?µg?kg?1), DCBX (71.2?µg?kg?1) and MQCA (0.2?µg?kg?1) could be detected in the muscle 0 days after the withdrawal of fortified feed. Only spiramycin could consistently be detected beyond a withdrawal period of 1?day. All analytes showed stability to a commercial cooking process, therefore raw or cooked muscle could be used for monitoring purposes.  相似文献   
29.
Quantum-dot cellular automata is one of the candidate technologies used in Nano scale computer design and a promising replacement for conventional CMOS circuits in the near future. Since memory is one of the significant components of any digital system, designing a high speed and well-optimized QCA random access memory (RAM) is a remarkable subject. In this paper, a new robust five-input majority gate is first presented, which is appropriate for implementation of simple and efficient QCA circuits in single layer. By employing this structure, a novel RAM cell architecture with set and reset ability is proposed. This architecture has a simple and robust structure that helps achieving minimal area, as well as reduction in hardware requirements and clocking zone numbers. Functional correctness of the presented structures is proved by using QCADesigner tool. Simulation results confirm efficiency and usefulness of the proposed architectures vis-à-vis state-of-the-art.  相似文献   
30.
汪艳贞  吴南健 《半导体学报》2005,26(13):261-264
研究了量子点分布的误差对镜像电荷量子元胞自动机(QCA)的影响. 镜像电荷QCA每个元胞中的四个量子点是被严格限制在正方形元胞的四个角上的,考虑到现有的量子点生长技术,量子点偏离理想位置的情况是不可避免的. 模拟了在正态分布误差存在时镜像电荷QCA的工作情况,并估算了在较小的介电常数下镜像电荷QCA可能达到的最高工作温度. 仿真结果表明正态分布标准差sigma小于0.1时,镜像电荷QCA可以正常工作,同时缩小QCA的元胞尺寸可以使镜像电荷QCA的最高工作温度达到室温以上.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号