首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44681篇
  免费   5174篇
  国内免费   3008篇
电工技术   3024篇
综合类   3761篇
化学工业   5294篇
金属工艺   1851篇
机械仪表   3959篇
建筑科学   1939篇
矿业工程   909篇
能源动力   2135篇
轻工业   960篇
水利工程   2274篇
石油天然气   1988篇
武器工业   469篇
无线电   7023篇
一般工业技术   3786篇
冶金工业   1224篇
原子能技术   472篇
自动化技术   11795篇
  2024年   176篇
  2023年   656篇
  2022年   1113篇
  2021年   1479篇
  2020年   1455篇
  2019年   1245篇
  2018年   1240篇
  2017年   1588篇
  2016年   1770篇
  2015年   2032篇
  2014年   2876篇
  2013年   2995篇
  2012年   3071篇
  2011年   3772篇
  2010年   2709篇
  2009年   2871篇
  2008年   2828篇
  2007年   3239篇
  2006年   2753篇
  2005年   2440篇
  2004年   2007篇
  2003年   1785篇
  2002年   1422篇
  2001年   1080篇
  2000年   883篇
  1999年   656篇
  1998年   544篇
  1997年   406篇
  1996年   324篇
  1995年   282篇
  1994年   253篇
  1993年   190篇
  1992年   169篇
  1991年   122篇
  1990年   102篇
  1989年   91篇
  1988年   41篇
  1987年   31篇
  1986年   29篇
  1985年   29篇
  1984年   26篇
  1983年   6篇
  1982年   13篇
  1981年   8篇
  1980年   9篇
  1979年   6篇
  1978年   8篇
  1977年   7篇
  1959年   9篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 436 毫秒
21.
The micromechanics models for composites usually underpredict the tensile strength of polymer nanocomposites. This paper establishes a simple model based on Kelly–Tyson theory for tensile strength of polymer/CNT nanocomposites assuming the effect of interphase between polymer and CNT. In addition, Pukanszky model is joined with the suggested model to calculate the interfacial shear strength (τ), interphase strength (σi) and critical length of CNT (Lc).The proposed approach is applied to calculate τ, σi and Lc for various samples from recent literature. It is revealed that the experimental data are well fitted to calculations by new model which confirm the important effect of interphase on the properties of nanocomposites. Moreover, the derived equations demonstrate that dissimilar correlations are found between τ and B (from Pukanszky model) as well as Lc and B. It is shown that a large B value obtained by strong interfacial adhesion between polymer and CNT is adequate to reduce Lc in polymer/CNT nanocomposites.  相似文献   
22.
The 3D structure electromagnetic computation presents several difficulties related to the volume mesh. In fact, the entire volume space must be taken into account even the smallest details. In this article, we propose a formulation based on the reciprocity theorem combined with the generalized equivalent circuit method to model a planar 3D structure with both coaxial and planar excitation. The major advantage of this formulation is the fact to reduce the computational volume into 2D ones in the discontinuity plane. In addition, we focused on the calculation of the discontinuity between the excitation source and the planar structure to determine the exact behavior of the electric coaxial excitation model. The obtained current density, electric field distributions, and the input impedance are presented and discussed in the following sections. An approximately good agreement of input impedance with those obtained by the simulator and measurement is shown.  相似文献   
23.
24.
Flow field structure can largely determine the output performance of Polymer electrolyte membrane fuel cell. Excellent channel configuration accelerates electrochemical reactions in the catalytic layer, effectively avoiding flooding on the cathode side. In present study, a three-dimensional, multi-phase model of PEMFC with a 3D wave flow channel is established. CFD method is applied to optimize the geometry constructions of three-dimensional wave flow channels. The results reveal that 3D wave flow channel is overall better than straight channel in promoting reactant gases transport, removing liquid water accumulated in microporous layer and avoiding thermal stress concentration in the membrane. Moreover, results show the optimal flow channel minimum depth and wave length of the 3D wave flow channel are 0.45 mm and 2 mm, respectively. Due to the periodic geometric characteristics of the wave channel, the convective mass transfer is introduced, improving gas flow rate in through-plane direction. Furthermore, when the cell output voltage is 0.4 V, the current density in the novel channel is 23.8% higher than that of conventional channel.  相似文献   
25.
This study investigated the use of recycled tire-derived aggregate (TDA) mixed with kaolin as a method of increasing the ultimate bearing capacity ( UBC) of a strip footing. Thirteen 1g physical modeling tests were prepared in a rigid box of 0.6 m × 0.9 m in plan and 0.6 m in height. During sample preparation, 0%, 20%, 40%, or 60% (by weight) of powdery, shredded, small-sized granular (G 1–4 mm) or large-sized granular (G 5–8 mm) TDA was mixed with the kaolin. A strip footing was then placed on the stabilized kaolin and was caused to fail under stress-controlled conditions to determine the UBC. A rigorous 3D finite element analysis was developed in Optum G-3 to determine the UBC values based on the experimental test results. The experimental results showed that, except for the 20% powdery TDA, the TDA showed an increase in the UBC of the strip footing. When kaolin mixed with 20% G (5–8 mm), the UBC showed a threefold increase over that for the unreinforced case. The test with 20% G (1–4 mm) recorded the highest subgrade modulus. It was observed that the UBC calculated using finite element modeling overestimated the experimental UBC by an average of 9%.  相似文献   
26.
An effective practical approach that allows not only a significant reduction in the scope of practical experiments in the course of studying suspension separation processes in hydrocyclones, but also makes it possible to assess the intensity of random components of the processes and define the interrelation between such components and hydrodynamics of flows in a hydrocyclone is presented. Within the frames of the developed probabilistic‐statistical model of suspension separation in hydrocyclones on the basis of statistical self‐similarity properties, a relationship was found between determined and random components of the processes. This allowed transitioning from three‐parameter probability density functions for suspension particles in hydrocyclones to two‐parameter functions; thus significantly improving the efficiency of practical application of the developed model.  相似文献   
27.
This paper considers the state‐dependent interference relay channel (SIRC) in which one of the two users may operate as a secondary user and the relay has a noncausal access to the signals from both users. For discrete memoryless SIRC, we first establish the achievable rate region by carefully merging Han‐Kobayashi rate splitting encoding technique, superposition encoding, and Gelfand‐Pinsker encoding technique. Then, based on the achievable rate region that we derive, the capacity of the SIRC is established in many different scenarios including (a) the weak interference regime, (b) the strong interference regime, and (c) the very strong interference regime. This means that our capacity results contain all available known results in the literature. Next, the achievable rate region and the associated capacity results are also evaluated in the case of additive Gaussian noise. Additionally, many numerical examples are investigated to show the value of our theoretical derivations.  相似文献   
28.
《Ceramics International》2022,48(8):10420-10427
Precision glass molding (PGM) is a recently developed method to fabricate glass microgroove components. Lead glass is commonly used as an optical material due to its high refractive index and low transition temperature. A nickel-phosphorous (Ni–P) plated mold is traditionally employed in the PGM process for microstructures optics. However, leaded glass is subject to color change and can blacken during the PGM process, reducing the light transmittance of microgrooves. In this paper, an equation for the redox reaction between Ni and Pb is proposed, which is based on the diffusion of inner Ni atoms to the surface of the mold and the standard electrode potential of the Pb ions in leaded glass. A viscoelastic constitutive model of the glass is established to simulate the compression stress distribution during molding. Finally, the effects of molding pressure, molding temperature, and mold material on glass blackening are studied. The results show that the blackening of leaded glass is caused by Pb enriching the surface. The rise in molding stress and temperature increases the deformation of Ni–P plating, which promotes the diffusion of Ni atoms. By adding a titanium incorporated diamond-like carbon (Ti-DLC) coating, the deformation of the Ni–P plating during molding is suppressed, and the diffusion of Ni atoms can be prevented. In this way, the blackening of leaded glass can be prevented.  相似文献   
29.
A series of 2-phenyloxazoles bearing an amide group at position 4 were designed and synthesized for evaluation as potential inhibitors of human recombinant monoamine oxidases (hrMAOs). Results of kinetics experiments demonstrated that all compounds behave as competitive MAO inhibitors, with good selectivity toward the MAO-B isoform. The most potent and selective derivatives are characterized by inhibition constant (Ki) values in the sub-micromolar range and a good selectivity index (Ki MAO-A/Ki MAO-B>50). Some derivatives were also found to be able to inhibit MAO activity in nerve growth factor (NGF)-differentiated PC12 cells, taken as a model of neuronal cells. In particular, 2-(2-hydroxyphenyl)-N-phenyloxazole-4-carboxamide (compound 4 a ) may be a promising new scaffold, exerting the highest selectivity and inhibitory effect toward MAOs in NGF-differentiated PC12 cell lysates, without compromising cell viability. Molecular docking analysis allowed a rationalization of the experimentally observed binding affinity and selectivity.  相似文献   
30.
This paper reviews recent studies, that not only includes both experiments and modeling components, but celebrates a close coupling between these techniques, in order to provide insights into the plasticity and failure of polycrystalline metals. Examples are provided of studies across multiple-scales, including, but not limited to, density functional theory combined with atom probe tomography, molecular dynamics combined with in situ transmission electron miscopy, discrete dislocation dynamics combined with nanopillars experiments, crystal plasticity combined with digital image correlation, and crystal plasticity combined with in situ high energy X-ray diffraction. The close synergy between in situ experiments and modeling provides new opportunities for model calibration, verification, and validation, by providing direct means of comparison, thus removing aspects of epistemic uncertainty in the approach. Further, data fusion between in situ experimental and model-based data, along with data driven approaches, provides a paradigm shift for determining the emergent behavior of deformation and failure, which is the foundation that underpins the mechanical behavior of polycrystalline materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号