首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   617篇
  免费   22篇
  国内免费   20篇
电工技术   14篇
综合类   10篇
化学工业   112篇
金属工艺   40篇
机械仪表   21篇
建筑科学   15篇
矿业工程   4篇
能源动力   69篇
轻工业   45篇
水利工程   10篇
无线电   160篇
一般工业技术   128篇
冶金工业   5篇
原子能技术   6篇
自动化技术   20篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   13篇
  2020年   7篇
  2019年   11篇
  2018年   18篇
  2017年   24篇
  2016年   23篇
  2015年   11篇
  2014年   42篇
  2013年   35篇
  2012年   35篇
  2011年   51篇
  2010年   42篇
  2009年   51篇
  2008年   34篇
  2007年   36篇
  2006年   33篇
  2005年   23篇
  2004年   36篇
  2003年   21篇
  2002年   7篇
  2001年   11篇
  2000年   16篇
  1999年   11篇
  1998年   10篇
  1997年   5篇
  1996年   8篇
  1995年   9篇
  1994年   7篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1976年   1篇
排序方式: 共有659条查询结果,搜索用时 31 毫秒
61.
Nanocrystalline vanadium pentoxide (V2O5) thin films have been deposited by a spray pyrolysis technique on preheated glass substrates. The substrate temperature was changed between 300 and 500 °C. The structural and morphological properties of the films were investigated by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The influence of different substrate temperatures on ethanol response of V2O5 has also been investigated. XRD revealed that the films deposited at Tpyr=300 °C have low peak intensities, but the degree of crystallinity improved when the temperature was increased to 500 °C and films had orthorhombic structures with preferential orientations along the (0 0 1) direction. The fractal analysis showed a decreasing trend versus the pyrolysis temperature. Sensing properties of the samples were studied in the presence of ethanol vapor. The operating temperature of the sensor was optimized for the best gas response. The response increased linearly with different ethanol concentrations. It was found that films deposited at the lowest substrate temperature (300 °C) had the highest sensing response to ethanol.  相似文献   
62.
An investigation on biohydrogen production was conducted in a granular sludge-based continuous stirred tank reactor (CSTR). The reactor performance was assessed at five different glucose concentrations of 2.5, 5, 10, 20 and 40 g/L and four hydraulic retention times (HRTs) of 0.25, 0.5, 1 and 2 h, resulting in the organic loading rates (OLRs) ranged between 2.5 and 20 g-glucose/L h. Carbon flow was traced by analyzing the composition of gaseous and soluble metabolites as well as the cell yield. Butyrate, acetate and ethanol were found to be the major soluble metabolite products in the biochemical synthesis of hydrogen. Carbon balance analysis showed that more than half of the glucose carbon was converted into unidentified soluble products at an OLR of 2.5 g-glucose/L h. It was found that high hydrogen yields corresponded to a sludge loading rate in between 0.6 and 0.8 g-glucose/g-VSS h. Substantial suppression in hydrogen yield was noted as the sludge loading rate fell beyond the optimum range. It is deduced that decreasing the sludge loading rate induced the metabolic shift of biochemical reactions at an OLR of 2.5 g-glucose/L h, which resulted in a substantial reduction in hydrogen yield to 0.36–0.41 mol-H2H2/mol-glucose. Optimal operation conditions for peak hydrogen yield (1.84 mol-H2H2/mol-glucose) and hydrogen production rate (3.26 L/L h) were achieved at an OLR of 20 g-glucose/L h, which corresponded to an HRT of 0.5 h and an influent glucose concentration of 10 g/L. Influence of HRT and substrate concentration on the reactor performance was interrelated and the adverse impact on hydrogen production was noted as substrate concentration was higher than 20 g/L or HRT was shorter than 0.5 h. The experimental study indicated that a higher OLR derived from appropriate HRTs and substrate concentrations was desirable for hydrogen production in such a granule-based CSTR.  相似文献   
63.
Different rotation speeds of the substrate about its surface normal were used to produce sculptured copper thin films of ∼ 90 nm thickness. X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to obtain nano-structure and morphology of these films. Their optical properties were measured by spectrophotometry in the spectral range of 340-850 nm. Real and imaginary refractive indices, film thickness and fraction of metal inclusion in the film structure were obtained from optical fitting of the spectrophotometer data.  相似文献   
64.
Transparent conducting indium doped zinc oxide (IZO) thin films have been deposited on soda-lime glass substrates by the spray pyrolysis technique. The structural, electrical, and optical properties of these films were investigated as a function of substrate temperature. In this work the substrate temperature was varied between 350 °C and 500 °C. X-ray diffraction pattern reveals that at 350 °C dominant peak is (100) orientation. By increasing substrate temperature from 350 °C to 450 °C, sheet resistance decreases, from 302 Ω/□ to 26 Ω/□, then at 500 °C increases to 34 Ω/□. In the useful range for deposition (i.e. 450 °C to 500 °C), the orientation of the films was predominantly (002). The lowest sheet resistance (26Ω/□) is obtained at substrate temperature of about 450 °C with the transmittance of about 75%. Study of scanning electron microscopy images shows that films deposited at 400 °C, have grain size as large as 574 nm, while with increasing substrate temperature to 450 °C, grain size becomes smaller and reaches to a value of about 100 nm with spherical shape. At 500 °C grain size value would be around 70 nm with the same spherical shape.  相似文献   
65.
Most of the Organic Light-Emitting Diodes (OLEDs) have a multilayered structure composed of functional organic layers sandwiched between two electrodes. Thin films of small molecules are generally deposited by thermal evaporation onto glass or other rigid or flexible substrates. The interface state between two organic layers in OLED device depends on the surface morphology of the layers and affects deeply the OLED performance. The morphology of organic thin films depends mostly on substrate temperature and deposition rate. Generally, the control of the substrate temperature allows improving the quality of the deposited films. For organic compounds substrate temperature cannot be increased too much due to their poor thermal stability. However, studies in inorganic thin films indicate that it is possible to modify the morphology of a film by using substrate vibration without increasing the substrate temperature. In this work, the effect of the resonance vibration of glass and silicon substrates during thermal deposition in high vacuum environment of tris(8-quinolinolate)aluminum(III) (Alq3) and N,N′-Bis(naphthalene-2-yl)-N,N′-bis(phenyl)-benzidine (β-NPB) organic thin films with different deposition rates was investigated. The vibration used was in the range of hundreds of Hz and the substrates were kept at room temperature during the process. The nucleation and subsequent growth of the organic films on the substrates have been studied by atomic force microscopy technique. For Alq3 and β-NPB films grown with 0.1 nm/s as deposition rate and using a frequency of 100 Hz with oscillation amplitude of some micrometers, the results indicate a reduction of cluster density and a roughness decreasing. Moreover, OLEDs fabricated with organic films deposited under these conditions improved their power efficiency, driven at 4 mA/cm2, passing from 0.11 lm/W to 0.24 lm/W with an increase in their luminance of about 352 cd/m2 corresponding to an increase of about 250% in the luminance with respect to the same OLEDs fabricated in the same way and with the same conditions without substrate vibration.  相似文献   
66.
Supersaturated dendritic Al-Mg alloy powders in globular form were produced using galvanostatic electrodeposition technique on polycrystalline Cu and Mg-substrates. The deposit produced on Cu-substrate possessed face centered cubic (fcc)-Al(Mg) phase with composition of ~ 18 at.% Mg. However, when Mg-substrate was used, initially hexagonal close packed (hcp)-Mg(Al) phase with ~ 77 at.% Mg was formed over which fcc-Al(Mg) phase with ~ 36 at.% Mg was nucleated. The results of the present study indicate that substrate crystal structure and estimated substrate-deposit lattice mismatch can influence the depositing phase and its composition but not the morphology of these powders.  相似文献   
67.
从材料特性出发,分析了氮化镓基LED用衬底材料的性能需求,主要分析了蓝宝石和碳化硅衬底在LED制作中的应用,并描述了当前的发展状态以及未来的发展趋势。  相似文献   
68.
The structures of the E277A isomaltase mutant from Saccharomyces cerevisiae in complex with isomaltose or maltose were determined at resolutions of 1.80 and 1.40 Å, respectively. The root mean square deviations between the corresponding main-chain atoms of free isomaltase and the E277Α-isomaltose complex structures and those of free isomaltase and the E277A-maltose complex structures were found to be 0.131 Å and 0.083 Å, respectively. Thus, the amino acid substitution and ligand binding do not affect the overall structure of isomaltase. In the E277A-isomaltose structure, the bound isomaltose was readily identified by electron densities in the active site pocket; however, the reducing end of maltose was not observed in the E277A-maltose structure. The superposition of maltose onto the E277A-maltose structure revealed that the reducing end of maltose cannot bind to the subsite + 1 due to the steric hindrance from Val216 and Gln279. The amino acid sequence comparisons with α-glucosidases showed that a bulky hydrophobic amino acid residue is conserved at the position of Val216 in α-1,6-glucosidic linkage hydrolyzing enzymes. Similarly, a bulky amino acid residue is conserved at the position of Gln279 in α-1,6-glucosidic linkage-only hydrolyzing α-glucosidases. Ala, Gly, or Asn residues were located at the position of α-1,4-glucosidic linkage hydrolyzing α-glucosidases. Two isomaltase mutant enzymes – V216T and Q279A – hydrolyzed maltose. Thus, the amino acid residues at these positions may be largely responsible for determining the substrate specificity of α-glucosidases.  相似文献   
69.
The gas diffusion layer (GDL) is composed of a substrate and a micro-porous layer (MPL), and is treated with polytetrafluoroethylene (PTFE) to promote water discharge. Additionally, the MPL mainly consists of carbon black and PTFE. In other words, the optimal design of these elements has a dominant effect on the polymer electrolyte membrane fuel cell (PEMFC) performance. For the GDL, it is crucial to prevent water flooding, and the water flux within the GDL is strongly affected by the capillary pressure gradient. In this study, the PEMFC performance was systematically investigated by varying the substrate PTFE content, MPL PTFE content, and MPL carbon loading per unit area. The effects of each experimental variable on the PEMFC performance and especially on the capillary pressure gradient were quantitatively analyzed when the GDLs were manufactured by the doctor blade manufacturing method. The experimental results indicated that as the PTFE content of the anode and cathode GDL increased, the PEMFC performance deteriorated due to the deformation of the porosity and tortuosity of the GDL. Additionally, the PEMFC performance improved as the MPL PTFE content of the cathode GDL increased at low relative humidity (RH), but the PEMFC performance tendency was reversed at high RH. Further, the MPL carbon loading of 2 mg/cm2 demonstrated the best performance, and the advantages and disadvantages of the MPL carbon loading were identified. In addition, the effects of each experimental variable on liquid water, water vapor, and gas permeability were investigated.  相似文献   
70.
ZnO:Al films (Al 2.5 wt%) were deposited using a DC facing targets magnetron sputtering via two ZnO targets mixed with Al2O3. The structural, electrical and optical properties of the deposited films were strongly influenced by substrate temperature. Films with better texture, higher transmission, lower resistivity and larger carrier concentration were obtained for the samples fabricated at higher substrate temperature. The optimal condition for deposition of ZnO:Al film with the lowest resistivity of 3.18×10−4 Ω cm, the highest carrier concentration of 4.58×1020 cm−3, and a transmission toward 85% in the visible range was obtained at 200 °C. This film proposes a promising future for the application of the practical window and contact layers for solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号