首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   84篇
  国内免费   14篇
电工技术   1篇
综合类   4篇
化学工业   91篇
金属工艺   2篇
机械仪表   16篇
建筑科学   7篇
矿业工程   3篇
能源动力   18篇
轻工业   2篇
石油天然气   4篇
无线电   115篇
一般工业技术   193篇
冶金工业   2篇
原子能技术   4篇
自动化技术   11篇
  2024年   6篇
  2023年   42篇
  2022年   14篇
  2021年   35篇
  2020年   45篇
  2019年   52篇
  2018年   35篇
  2017年   33篇
  2016年   19篇
  2015年   14篇
  2014年   20篇
  2013年   29篇
  2012年   6篇
  2011年   4篇
  2010年   14篇
  2009年   10篇
  2008年   6篇
  2007年   9篇
  2006年   15篇
  2005年   3篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1981年   2篇
排序方式: 共有473条查询结果,搜索用时 15 毫秒
221.
ABSTRACT: The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.  相似文献   
222.
合成了以胆固醇为疏水基、双甘肽为亲水基的两亲分子N-胆固醇甲酰基双甘肽钾盐(Chol-GG-K)。利用透射电镜(TEM)、激光共聚焦显微镜(CLSM)等手段研究了该分子在水中的聚集行为,发现其在水中形成了多分散的囊泡结构。胆固醇的范德华力形成强疏水作用和聚集能力,亲水基的氢键作用也是产生聚集作用的驱动力。  相似文献   
223.
A novel approach to perturbed equations of state for simple fluids is presented and its advantages over the traditional perturbed hard sphere equations are demonstrated by its application to several model fluids. The approach is based on a short range Yukawa reference which incorporates, in addition to repulsive interactions, also attractive interactions at short separations. The considered models of common interest are the Sutherland, Lennard-Jones, and EXP6 fluids. It is shown that using the proposed approach the reference system captures a good deal of properties of the studied fluids and that an accurate equation of state can be obtained using only the crude mean field (augmented van der Waals) approach.  相似文献   
224.
2D magnets have recently drawn enormous interest. As an air-stable A-type van der Waals antiferromagnet (AFM), CrSBr has attracted great attention but has also led to controversies about its large-span ordering temperatures. Herein, a systematic study of the magnetic phase transition in single-crystalline CrSBr with ultrahigh-quality through surface-sensitive X-ray magnetic linear dichroism and X-ray magnetic circular dichroism measurements combined with vibrating sample magnetometry for characterization of bulk magnetization is reported. The interlayer AFM order of both surface and bulk CrSBr is revealed to maintain a similar Néel temperature within the range of 132–142 K. However, the intralayer ferromagnetic (FM) order of surface CrSBr is found to sustain up to ≈238 K, 70 K higher than the value obtained from the bulk CrSBr, demonstrating a dramatically different surface and bulk Curie temperature in CrSBr. Moreover, a half-filled t2g electronic state for Cr3+ ions with magnetic moment of ≈3 µB/Cr in CrSBr is clearly identified. These results enrich the understanding of the electronic structure and magnetism in CrSBr, providing this material as a promising building block for future spintronic devices.  相似文献   
225.
利用量子力学与分子力学结合的方法研究C_(14),C_(22),C_(30)的直链2-烯烃、芳烃、直链烷烃、环烷烃在H-FAU分子筛上的吸附特性,烃分子吸附能随碳数的增加而增大。烃分子吸附在H-FAU分子筛上,烯烃和芳烃双键碳原子因具有π电子与分子筛B酸中心间形成π-H键,烷烃、环烷烃与B酸中心间有电子诱导作用,烃分子与分子筛骨架间有范德华作用。烃分子碳数的增加会增大分子与分子筛骨架间的范德华作用,不影响烯烃、芳烃与B酸中心间π-H键作用或烷烃、环烷烃与B酸中心间电子诱导作用。不同类型烃分子与分子筛B酸中心间相互作用由大到小的顺序为直链2-烯烃芳烃直链烷烃环烷烃。  相似文献   
226.
This study is aimed at understanding the controversy between the surface tension component (STC) theory and the equation of state (EQS) approach for interfacial tensions. We attempt to relate molecular interactions to various components of surface tension. Molecular interactions consist of electrostatic (ES), charge transfer (CT), polarization (PL), exchange-repulsion (EX), dispersion (DIS), and coupling (MIX) components. These interactions can be the basis for the STC theory involving Lifshitz-van der Waals (LW) and the short range acid-base (AB) or donor-acceptor interaction. Each of these components is shown to contain two major parameters. New equations for the interaction energy and surface tension for polar molecules are proposed to include the ES and EX parameters, which happen in some cases to balance each other or nearly cancel out without being detected. The roles of molecular interactions on adhesion, adsorption, contact angle, and wettability are illustrated through the spreading coefficient S, the Hamaker coefficient A, and Derjaguin's disjoining pressure . We have found that the STC theory is applicable to the systems involving either physisorption or chemisorption, whlie the EQS applies to those involving ony physisorption.  相似文献   
227.
Transition metal dichalcogenide (TMDC) nanotubes complement the field of low-dimensional materials with their quasi-1D morphology and a wide set of intriguing properties. By introducing different transition metals into the crystal structure, their properties can be tailored for specific purpose and applications. Herein, the characterization and a subsequent preparation of single-nanotube field emission devices of MoxWx-1S2 nanotubes prepared via the chemical vapor transport reaction is presented. Energy-dispersive X-ray spectroscopy, Raman spectroscopy, and X-ray diffraction  indicate that the molybdenum and tungsten atoms are randomly distributed within the crystal structure and that the material is highly crystalline. High resolution transmission electron microscopy  and electron diffraction (ED) patterns further corroborate these findings. A detailed analysis of the ED patterns from an eight-layer nanotube reveal that the nanotubes grow in the 2H structure, with each shell consists of one bilayer. The work function of the nanotubes is comparable to that of pure MoS2 and lower of pure WS2 NTs, making them ideal candidates for field emission applications. Two devices with different geometrical setup are prepared and tested as field emitters, showing promising results for single nanotube field emission applications.  相似文献   
228.
Most atomically thin piezoelectrics suffer from weak piezoelectric response or current rectification along the thickness direction, which largely hinders their applications in a vertical crossbar architecture. Therefore, exploring new types of ultrathin materials with strong longitudinal piezoelectric coefficient and rectification is highly desired. In this study, the monolayer of van der Waals CuInP2S6 (CIPS) is successfully exfoliated and its strong piezoelectricity in the out-of-plane direction with an effective coefficient d33eff of ≈5.12 pm V−1, which is one or two orders of magnitude higher than that of most existing monolayer materials with intrinsic d33, is confirmed. A prototype vertical device is further constructed and the current rectification is achieved through the flexoelectricity induced by the scanning tip force. The switching between low and high rectification states can be readily controlled by tuning the mechanical loads. These findings manifest that CIPS possesses promising application in vertical nanoscale piezoelectric devices and provides a novel strategy for achieving a good current rectification in ultrathin piezoelectrics.  相似文献   
229.
Group III-nitrides have attracted significant attention in recent years for their wide tunable band-gaps and excellent optoelectronic capabilities, which are advantageous for several applications including light-emitting diodes, lasers, photodetectors, and large-size low-cost power electronic devices. However, conventional epitaxy accompanied by the covalent bond formation renders the transfer of nitride epilayers difficult, thereby limiting the application potential of nitrides in wearable and flexible electronics. Furthermore, interfacial covalent bonds also limit substrate selection and hinder the development of heterogeneous integration between nitrides and other material systems. 2D materials can mitigate these problems significantly. On the one hand, due to the weak van der Waals forces between the layers of 2D materials, influences of lattice mismatch can be avoided to improve crystal quality. On the other hand, delamination and transfer of nitride epilayers can be achieved easily. Therefore, this study focuses on providing comprehensive guidelines regarding the exfoliation of epitaxial layers using 2D materials to provide new design freedoms for nitride devices. Different 2D buffers and release layers have also been discussed. Furthermore, the limitations, promising solutions, future directions, and applicability of this strategy to flexible nitride devices are presented.  相似文献   
230.
Layered van der Waals (vdW) magnets are prominent playgrounds for developing magnetoelectric, magneto-optic, and spintronic devices. In spintronics, particularly in spincaloritronic applications, low thermal conductivity (κ) is highly desired. Herein, by combining thermal transport measurements with density functional theory calculations, this study demonstrates low κ down to 1 W m−1 K−1 in a typical vdW ferromagnet Cr2Si2Te6. In the paramagnetic state, development of magnetic fluctuations way above Tc = 33 K strongly reduces κ via spin-phonon scattering, leading to low κ ≈ 1 W m−1 K−1 over a wide temperature range, in comparable to that of amorphous silica. In the magnetically ordered state, emergence of resonant magnon-phonon scattering limits κ below ≈2 W m−1 K−1, which will be three times larger if magnetic scatterings are absent. Application of magnetic fields strongly suppresses the spin-phonon scattering, giving rise to large enhancements of κ. This study's calculations well capture these complex behaviors of κ by taking the temperature- and magnetic-field-dependent spin-phonon scattering into account. Realization of low κ, which is easily tunable by magnetic fields in Cr2Si2Te6, may further promote spincaloritronic applications of vdW magnets. This study's theoretical approach may also provide a generic understanding of spin-phonon scattering, which appears to play important roles in various systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号