全文获取类型
收费全文 | 3396篇 |
免费 | 812篇 |
国内免费 | 33篇 |
专业分类
电工技术 | 13篇 |
综合类 | 53篇 |
化学工业 | 2741篇 |
金属工艺 | 16篇 |
机械仪表 | 41篇 |
建筑科学 | 38篇 |
矿业工程 | 3篇 |
能源动力 | 319篇 |
轻工业 | 76篇 |
水利工程 | 2篇 |
石油天然气 | 25篇 |
武器工业 | 1篇 |
无线电 | 218篇 |
一般工业技术 | 627篇 |
冶金工业 | 13篇 |
原子能技术 | 30篇 |
自动化技术 | 25篇 |
出版年
2024年 | 28篇 |
2023年 | 142篇 |
2022年 | 94篇 |
2021年 | 279篇 |
2020年 | 239篇 |
2019年 | 208篇 |
2018年 | 224篇 |
2017年 | 225篇 |
2016年 | 186篇 |
2015年 | 216篇 |
2014年 | 217篇 |
2013年 | 193篇 |
2012年 | 231篇 |
2011年 | 187篇 |
2010年 | 161篇 |
2009年 | 146篇 |
2008年 | 159篇 |
2007年 | 123篇 |
2006年 | 155篇 |
2005年 | 143篇 |
2004年 | 120篇 |
2003年 | 121篇 |
2002年 | 100篇 |
2001年 | 62篇 |
2000年 | 34篇 |
1999年 | 43篇 |
1998年 | 33篇 |
1997年 | 37篇 |
1996年 | 19篇 |
1995年 | 23篇 |
1994年 | 19篇 |
1993年 | 17篇 |
1992年 | 8篇 |
1991年 | 7篇 |
1990年 | 7篇 |
1989年 | 3篇 |
1988年 | 5篇 |
1987年 | 4篇 |
1986年 | 2篇 |
1985年 | 4篇 |
1984年 | 5篇 |
1983年 | 1篇 |
1982年 | 4篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1951年 | 5篇 |
排序方式: 共有4241条查询结果,搜索用时 31 毫秒
101.
Chenxu Geng Yuxiu Sun Zhengqing Zhang Zhihua Qiao Chongli Zhong 《American Institute of Chemical Engineers》2023,69(5):e18025
Mixed matrix metal–organic framework (MOF) membranes show excellent application prospects in gas separation. However, their stability in various practical application scenarios is poor, especially under humid conditions. Herein, we encapsulated a hydrophobic ionic liquid (IL) into the cavity of MOFs, which effectively mitigated the competition between H2O and CO2 in humid gas mixtures, leading to stable and high-performance gas separation. For this reason, the resulting membranes using polymer of intrinsic miroporosity-1 (PIM-1) as a polymer matrix show good CO2/N2 separation performance and long-term test stability under humid environment. In particular, the 20 wt% IL-UiO/PIM-1 shows a high permeability of 13,778 Barrer and competitive CO2/N2 separation factor of ~35.2, transcending the latest upper bound. Besides, the according membrane module exhibits slightly decreased CO2 permeability and selectivity, promoting the application of self-supporting membranes. This work provides a reliable strategy for the rational design of MOF-based hybrid membranes under extreme conditions. 相似文献
102.
Modeling and simulation of membrane‐based solvent extraction is conducted by computational fluid dynamics (CFD). The process is used for removal of priority organic pollutants from aqueous waste streams in nanoporous membranes. The pollutants include phenol, nitrobenzene, and acrylonitrile extracted by organic solvents. The mathematical model commonly applied to predict the performance of membrane‐based solvent extraction is the conventional resistance‐in‐series model. Here, a comprehensive mathematical model is developed to predict the transport of pollutants through nanoporous media. In order to predict the performance of the separation process, conservation equations for pollutants in the membrane module are derived and solved numerically. The model is then validated through comparing with experimental data reported in the literature. The simulation results were in good agreement with the experimental data for different values of feed flow rates. 相似文献
103.
A mathematical model for the dynamic performance of gas separation with high flux, asymmetric hollow fibre membranes was developed considering the permeate pressure build‐up inside the fibre bore and cross flow pattern with respect to the membrane skin. The solution technique provides reliable examination of pressure and concentration profiles along the permeator length (both residue/permeate streams) with minimal effort. The proposed simulation model and scheme were validated with experimental data of gas separation from literature. The model and solution technique were applied to investigate dynamic performance of several membrane module configurations for methane recovery from biogas (landfill gas or digester gas), considering biogas as a mixture of CO2, N2 and CH4. Recycle ratio plays a crucial role, and optimum recycle ratio vital for the retentate recycle to permeate and permeate recycle to feed operation was found. From the concept of two recycle operations, complexities involved in the design and operation of continuous membrane column were simplified. Membrane permselectivity required for a targeted separation to produce pipeline quality natural gas by methane‐selective or nitrogen‐selective membranes was calculated. © 2012 Canadian Society for Chemical Engineering 相似文献
104.
The structure, porosity and crystallization behavior of poly (L-lactic acid) and poly (L-lactic acid)/polyurethane porous membranes, prepared from ethanol/dioxane and ethanol/water coagulation baths through immersion precipitation, have been systematically investigated. The diffusion rate between solvent and nonsolvent as well as the equilibrium phase diagram of PLLA/solvent/nonsolvent system were also well studied. It has been proved that the ultimate structure and performance of the membranes could be mediated under control by suitable adjustment on phase separation behavior of the ternary system through varying coagulation bath compositions. The results show that the presence of lower ratio of dioxane in ethanol baths endows the resulting membranes with uniform sponge-like structure, higher porosity and crystallinity due to the moderate solidification and crystallization of PLLA, while increasing the water concentration tends to have a modestly opposite effect and obtains membranes with irregular finger-like structure, lower porosity and crystallinity. Under the same coagulation baths, PLLA/PU membranes possess slightly larger pores size and porosity than pure PLLA membranes, but the presence of PU appears to have no effect on the crystallinity of PLLA. 相似文献
105.
Qusay F. Alsalhy Khalid T. Rashid Salah S. Ibrahim Abdulsattar H. Ghanim Bart Van der Bruggen Patricia Luis Mumtaz Zablouk 《应用聚合物科学杂志》2013,129(6):3304-3313
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐co‐HFP) hollow fiber membranes were prepared by using the phase inversion method. The effect of polyethylene glycol (PEG‐600Mw) with different concentrations (i.e., 0, 5, 7, 10, 12, 15, 18, and 20 wt %) as a pore former on the preparation and characterization of PVDF‐co‐HFP hollow fibers was investigated. The hollow fiber membranes were characterized using scanning electron microscopy, atomic force microscopy, and porosity measurement. It was found that there is no significant effect of the PEG concentration on the dimensions of the hollow fibers, whereas the porosity of the hollow fibers increases with increase of PEG concentration. The cross‐sectional structure changed from a sponge‐like structure of the hollow fiber prepared from pure PVDF‐co‐HFP to a finger‐like structure with small sponge‐like layer in the middle of the cross section with increase of PEG concentration. A remarkable undescribed shape of the nodules with different sizes in the outer surfaces, which are denoted as “twisted rope nodules,” was observed. The mean surface roughness of the hollow fiber membranes decreased with an increase of PEG concentration in the polymer solution. The mean pore size of the hollow fibers gradually increased from 99.12 to 368.91 nm with increase of PEG concentration in polymer solution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
106.
Zheng‐Qing Huang Ya‐Shu Chen Zhi‐Wei Chen Long‐Hui Nie Zhi Zhang Hong‐Tao Xu Kai‐Mei Zhou 《应用聚合物科学杂志》2013,129(6):3558-3565
A series of Fe3O4‐PES ultrafiltration membranes with different mass ratios of Fe3O4 and PAA were prepared from suspensions, using the phase inversion process. The suspensions consisted of polyether sulfone (PES), dimethyl formamide, polyacrylic acid (PAA), and ferrosoferric oxide (Fe3O4). The separation properties of ultrafiltration membranes with different Fe3O4/PAA mass ratio were investigated by a cross‐flow experimental system. The Fe3O4/PAA mass ratio had little effect on the rejection of membranes to BSA. However, the pure water flux had a slight decline and then rised rapidly with the increase of Fe3O4/PAA mass ratio. An interesting phenomenon observed was that the Fe3O4 particles could diffuse into the nonsolvent bath during the formation of membrane, and the amount of Fe3O4 extracted into the nonsolvent bath nearly kept a constant mass ratio to PAA, even if the Fe3O4/PAA proportion was changed. The reasons of this interesting phenomenon were investigated. This result indicates that modified inorganic fillers may be used as the pore‐forming agent to prepare the porous membranes like the template leaching method. At the same time, this method does not use any strong acid or base. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
107.
Qusay Alsalhy Amil Merza Khalid Rashid Arman Adam Alberto Figoli Silvia Simone Enrico Drioli 《应用聚合物科学杂志》2013,130(2):989-1004
Hollow‐fiber ultrafiltration (UF) membranes were prepared from blends of poly(vinyl chloride) (PVC) and polystyrene (PS) with a dry/wet phase inversion method. Poly(ethylene glycol) (PEG) and N,N‐dimethylacetamide were used as the additive and solvent, respectively. The effects of the PEG concentration in the dope solution as an additive on the cross sections and inner and outer surface morphologies, permeability, and separation performance of the hollow fibers were examined. The mean pore size, pore size distribution, and mean roughness of both the inner and outer surfaces of the produced hollow fibers were determined by atomic force microscopy. Also, the mechanical properties of the hollow‐fiber membranes were investigated. UF experiments were conducted with aqueous solutions of poly(vinyl pyrrolidone) (PVP; K‐90, Mw = 360 kDa). From the results, we found that the PVC/PS hollow‐fiber membranes had two layers with a fingerlike structure. These two layers were changed from a wide and long to a thin and short morphology with increasing PEG concentration. A novel and until now undescribed shape of the nodules in the outer surfaces, which was denoted as a sea‐waves shape, was observed. The outer and inner pore sizes both increased with increasing PEG concentration. The water permeation flux of the hollow fibers increased from 104 to 367 L m?2 h?1 bar?1) at higher PEG concentrations. The PVP rejection reached the highest value at a PEG concentration of 4 wt %, whereas at higher values (from 4 to 9 wt %), the rejection decreased. The same trend was found also for the tensile stress at break, Young's modulus, and elongation at break of the hollow fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 989‐1004, 2013 相似文献
108.
Yan Xia Guang Lu Han Qiu Gen Zhang Yi Gong Ian Broadwell Qing Lin Liu 《应用聚合物科学杂志》2013,130(5):3718-3725
CuO‐filled aminomethylated polysulfone hybrid membranes were prepared for sulfur removal from gasoline. The as‐prepared membranes were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X‐ray diffraction (XRD). The separation performance of the hybrid membranes was evaluated by pervaporation (PV) separation of n‐heptane/thiophene binary mixture. CuO‐filling leads to a decrease in permeation flux. The sulfur‐enrichment factor increased first and then decreased with increasing CuO loading, and it is worth noting that there is a rebound in enrichment factor above 8 wt % CuO loading. Influencing factors such as nitrogen content, feed temperature, sulfur content, and various hydrocarbons on membrane PV performance were also evaluated. Permeation flux of 23.9 kg·μm·m?2·h?1 and sulfur‐enrichment factor of 3.9 can be achieved at 4 wt % CuO loading in PV of n‐heptane/thiophene binary mixture with 1500 μg·g?1 sulfur content. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3718–3725, 2013 相似文献
109.
Novel charged membranes were prepared with sulfonated poly(ether ether ketone) (SPEEK). Methylsulfonic acid was used as solvent to accommodate the very low degree of sulfonation of the SPEEK. Membranes were prepared by immersion phase inversion method, using coagulation baths of different composition and temperature. Low molecular weight and negatively charged dye molecules were used as model solutes to test the nanofiltration (NF) performance of the membranes. Higher than 93% rejection of the two dye molecules, Rose Bengal and Reactive Brilliant Red, was observed at normal operating temperature. A permeate flux as high as 497 L m?2 h?1 and higher than 90% of solute rejection at 80°C was achieved in the NF of Reactive Brilliant Red aqueous solution, in contrast to a flux of 226 L m?2 h?1 and about 78% of solute rejection at the same temperature in the case of Rose Bengal solute. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
110.
Microporous polyvinylidene fluoride (PVDF) membranes were synthesized from PVDF/N‐methyl‐2‐pyrrolidinone (NMP) solutions using an immersion–precipitation method with a 2‐propanol/water mixture as a soft coagulant. The effects of membrane thickness on pore size distribution and surface/cross‐section morphology were studied using capillary flow porometry and scanning electron microscopy (SEM), respectively. All the synthesized membranes had a small range of pore size distribution, with the pore size decreasing with increasing casting thickness. The semicrystalline PVDF membranes demonstrated significant variations in morphology under SEM observation, with the existence of polymer agglomeration at a casting thickness of 500 μm and above. The protein binding capacity was observed to be highest at a casting thickness of 400 μm, where optimum pore morphology provided a large surface area for protein binding. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献