首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1285篇
  免费   518篇
  国内免费   56篇
电工技术   4篇
综合类   38篇
化学工业   703篇
金属工艺   58篇
机械仪表   11篇
建筑科学   2篇
矿业工程   1篇
能源动力   30篇
轻工业   55篇
石油天然气   5篇
无线电   278篇
一般工业技术   622篇
冶金工业   37篇
原子能技术   10篇
自动化技术   5篇
  2024年   11篇
  2023年   62篇
  2022年   24篇
  2021年   145篇
  2020年   117篇
  2019年   109篇
  2018年   115篇
  2017年   116篇
  2016年   153篇
  2015年   136篇
  2014年   146篇
  2013年   131篇
  2012年   80篇
  2011年   92篇
  2010年   65篇
  2009年   79篇
  2008年   69篇
  2007年   56篇
  2006年   37篇
  2005年   26篇
  2004年   13篇
  2003年   21篇
  2002年   9篇
  2001年   10篇
  2000年   6篇
  1999年   9篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1989年   2篇
排序方式: 共有1859条查询结果,搜索用时 15 毫秒
71.
Today, CO2 separation is very important, both as an environmental issue and also in various industries. In this study, the water-based nanofluid of NaP zeolite nanocrystals and 1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]) ionic liquid were mixed and tested experimentally for CO2 absorption in an isothermal high pressure cell equipped with magnetic stirring. Zeolite nanocrystals were synthesized via the hydrothermal approach and characterized. A series of experiments were performed at different conditions to investigate the impact of various parameters, including nanoparticle type, nanoparticle concentration, stabilizer concentration, and the vessel's initial pressure, on CO2 solubility. It was found that 0.02 wt.% of zeolite nanoparticles, 0.4 wt.% of [C12mim][Cl] ionic liquid, and 0.05 wt.% of sodium dodecyl benzene sulphonate (SDBS) in nanofluids result in higher absorption of CO2 compared to other concentrations. Furthermore, CO2 absorption was increased by increasing ionic liquid and surfactant concentration up to a certain value near critical micelle concentration, but after that the CO2 absorption was decreased. The overall CO2 absorption enhancement at 20 bar for 0.02 wt.% zeolite and ZnO water-based nanofluids with 0.4% [C12mim][Cl] ionic liquid and 0.02 wt.% SDBS were 26.9%, 21.5%, 21.2%, and 17% in comparison to pure water, respectively. In an absorption process using nanofluids, besides the influence of the mentioned parameters, the micro-convection caused by Brownian motion and the grazing effect of nanoparticles should be noted. Considering the micro-convection and grazing effects, a theoretical model should take into account the Brownian motion and grazing effects on the mass transfer rate in nanofluids to investigate the absorption enhancement by nano-particles.  相似文献   
72.
Polymethyl methacrylate (PMMA)/Fe(IO3)3 nanocomposite thin films are obtained by in situ particle generation in microemulsions and subsequent photopolymerization of a mixture containing methyl methacrylate, trimethylolpropane triacrylate, and crystallized iron iodate (Fe(IO3)3) nanorods. Hyper‐Rayleigh scattering measurements combined with X‐ray diffraction, transmission electron microscopy, and dynamic light scattering are first used to probe in situ the crystallization kinetics of iron iodate nanorods in water‐in‐oil microemulsions prepared with methyl methacrylate as the oil phase and marlophen NP12 as a surfactant. Trimethylolpropane triacrylate is then added as a crosslinker before spin‐coating. Films are deposited on glass substrates for the nonlinear optical characterizations and on silicon wafers for the piezoelectric and mechanical measurements. Nanocomposite films treated by corona discharge are finally characterized through optical microscopy, laser Doppler vibrometry, and Brillouin spectroscopy. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1203‐1211, 2013  相似文献   
73.
Piezoelectric films were prepared by incorporation of lithium niobate (LiNbO3) nanoparticles into copolymer of vinylidene difluoride and trifluoroethylene. Nanoparticles of LiNbO3 with ferroelectric phase were successfully synthesized and dispersed homogenously by ultrasonication in the copolymer matrix without any surfactant or surface functionalization. The nanocomposites were fully characterized by electronic microscopy, X‐ray diffraction, differential scanning calorimetry, dynamical mechanical analysis, and piezometer. Surprisingly, the copolymer matrix crystallinity and morphology were not affected by the incorporation of nanoparticles. Therefore the nanocomposites remained good mechanicals properties and high ferroelectricity coupled to nonlinear optical activity thanks to the noncentro symmetric space group of lithium niobate. This could be a novel approach to develop new multifunctional materials. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
74.
Polyurethane–clay nanocomposite adhesives were prepared by different synthetic routes and their microstructures were determined by X‐ray diffraction measurements and from transmission electron microscopy images. The preparation method of the polyurethane nanocomposite adhesives was systematically changed, that is, condensation either in the presence or absence of catalyst, concentration and type of nanoclay, premixing order of nanoclay (nanoclay was either premixed with the polyol or isocyanate part) and by using MDI surface treated nanoclays. Depending on the polymerization conditions cluster, intercalated, and exfoliated clay structures were obtained. The flame retardant properties of the manufactured nanocomposite adhesives and the synergistic effect of clay in combination with dolomite were investigated by cone calorimeter and UL 94 vertical burning tests. The results indicate that addition of nanoclay reduces burning time and the total heat evolved (THE) at flame out, and that the type of assembled clay structure (cluster, intercalated or exfoliated) had a significant effect on the flame retardant property. Nanocomposites with 3 wt % of clay loading gave the shortest burning time, the lowest THE and also UL 94 V‐2 ratings were reached, although the flame retardancy in terms of heat release rate and time to ignition was not improved. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
75.
The essential work of fracture (EWF) approach was adopted to reveal the effect of nanofillers on the toughness of poly (?‐caprolactone) (PCL)/boehmite alumina (BA) nanocomposites. Synthetic BA particles with different surface treatments were dispersed into the PCL matrix by extrusion melt compounding. The morphology of the composites was studied by scanning electron microscopy. Differential scanning calorimetry and wide‐angle X‐ray scattering were used to detect changes in the crystalline structure of PCL. Also, mode I type EWF tests, dynamic mechanical analysis, and quasi‐static tensile tests were applied to study the effect of the BA nanofillers on the mechanical properties of the nanocomposites. BA was homogeneously dispersed and acted as heterogeneous crystallization nucleant and a nonreinforcing filler in PCL. The tensile modulus and yield strength slightly increased and the yield strain decreased with increasing BA content (up to 10 wt %). The effect of the BA surface treatment with octylsilane was negligible by contrast to that with alkylbenzene sulfonic acid (OS2). Like the tensile mechanical data, the essential and nonessential work of fracture parameters did not change significantly either. The improved PCL/BA adhesion in case of OS2 treatment excluded the usual EWF treatise. This was circumvented by energy partitioning between yielding and necking. The yielding‐related EWF decreased, whereas the nonessential EWF increased with BA content and with better interfacial adhesion. This was attributed to the effect of matrix/filler debonding. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
76.
In this work, a novel method for the preparation of polymer/semiconductor nanocomposites is presented. The nanocomposite is directly prepared from a suspension of nanocrystalline silicon (nc‐Si) in bulk vinyl monomers (acrylates) and focused heating of the nc‐Si by irradiation with a pulsed laser at 532 nm wavelength. The silicon nanocrystals are the inorganic component of the composite and simultaneously act as initiation points of the free radical polymerization forming the hybrid composite. By this method, patterned nanocomposite films with thicknesses up to ≈250 µm can be readily prepared. Furthermore, the polymerization kinetics were investigated for different reaction conditions such as irradiation time, laser intensity, nc‐Si content, and addition of radical initiators.

  相似文献   

77.
王振林 《玻璃》2013,(8):22-26
采用熔融冷却法制备了组分为55SiO2-20Al2O3-5CaO-20CaF2及45SiO2-20Al2O3-10CaO-25CaF2两组玻璃,并通过热分析测定了玻璃的转变温度、核化温度和晶化温度。采取等温热处理工艺在不同温度下对两组玻璃进行3h晶化热处理并对热处理后的试样进行物相结构、透光率和微观形貌的表征。结果表明,将玻璃进行等温晶化热处理能制备含CaF2纳米晶的透明玻璃陶瓷;增加组分中CaF2及CaO的含量能提高体系的玻璃转变温度及成核温度;提高热处理温度使析晶程度增大,透光率下降;CaF2和CaO在玻璃中可引起成分偏聚而产生分相,提高玻璃的析晶程度。  相似文献   
78.
The interactions between nanoparticles and cells or tissues are frequently mediated by different biomolecules adsorbed onto the surface of nanoparticles. In this study, several methoxy poly(ethylene glycol)‐poly(ε‐caprolactone) (mPEG‐PCL) copolymers with various mPEG/PCL ratios were synthesized and used to produce three types of mPEG‐PCL nanoparticles. The protein‐adsorption behavior of nanoparticles was assessed using fetal‐bovine‐serum (FBS) as a model protein. The cell uptake of nanoparticles at different nanoparticle doses as well as various culture periods was examined by measuring their endocytosis rate related to Hela cells cultured in FBS‐free and FBS‐contained media. The blood clearance of nanoparticles was evaluated using Kunming mice to see the differences in circulation durations of nanoparticles. Results suggest that that FBS is able to significantly regulate the cell uptake of nanoparticles in vitro, and on the other hand, the size and mPEG/PCL molar ratio of mPEG/PCL nanoparticles are closely correlated to their blood clearance. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42884.  相似文献   
79.
Poly(styrene‐co‐divinylbenzene)/single‐walled carbon nanotubes (SWCNTs) polymerized high‐internal‐phase emulsion (polyHIPE) nanocomposite foams were successfully synthesized with various types of aqueous‐phase surfactants. The effects of anionic, cationic, nonionic, and mixed surfactants on the morphology and electrical conductivity of the resulting nanocomposite foams were investigated. The use of an anionic surfactant, sodium dodecylbenzesulfonate (SDBS), did not completely result in the typical polyHIPE nanocomposite foam microstructure because of the partial instability of the high‐internal‐phase emulsion. The nanocomposite foams synthesized by nonionic surfactants, that is, Pluronic F127 and Triton X‐100, and the cationic/anionic mixture, cetyltrimethylammonium bromide/SDBS, exhibited the proper morphology, but the resulting nanocomposite foams were electrically insulators. Interestingly, the use of a Gemini‐like surfactant, sodium dioctylsulfosuccinate (SDOSS), significantly improved both the typical morphology and electrical properties of the resulting nanocomposite foams because of the probable stronger interactions of SDOSS molecules with SWCNTs. The typical morphology of the nanocomposite foam synthesized with the SDOSS/F127 mixed surfactant was significantly improved, but the electrical conductivity decreased to some extent compared with the SDOSS‐synthesized nanocomposite foams. This behavior was attributed to an increase in the tunneling length of the electrons between adjacent SWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43883.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号