全文获取类型
收费全文 | 376篇 |
免费 | 21篇 |
国内免费 | 3篇 |
专业分类
电工技术 | 1篇 |
综合类 | 4篇 |
化学工业 | 21篇 |
金属工艺 | 6篇 |
机械仪表 | 1篇 |
能源动力 | 1篇 |
武器工业 | 2篇 |
无线电 | 151篇 |
一般工业技术 | 206篇 |
冶金工业 | 1篇 |
自动化技术 | 6篇 |
出版年
2025年 | 1篇 |
2024年 | 32篇 |
2023年 | 37篇 |
2022年 | 9篇 |
2021年 | 33篇 |
2020年 | 48篇 |
2019年 | 56篇 |
2018年 | 40篇 |
2017年 | 33篇 |
2016年 | 21篇 |
2015年 | 21篇 |
2014年 | 18篇 |
2013年 | 9篇 |
2012年 | 14篇 |
2011年 | 10篇 |
2010年 | 5篇 |
2009年 | 5篇 |
2008年 | 3篇 |
2007年 | 2篇 |
2003年 | 1篇 |
2000年 | 1篇 |
1951年 | 1篇 |
排序方式: 共有400条查询结果,搜索用时 15 毫秒
41.
The study of Nepenthes pitcher plants‐bioinspired anisotropic slippery liquid‐infused porous surfaces (SLIPS) is currently in its infancy. The factors that influence their anisotropic self‐cleaning and electric response of a drop's motion and the mechanism have not been fully elucidated. In order to address these problems, two new types of anisotropic slippery surfaces have been designed by using directional, porous, conductive reduced graphene oxide (rGO) films, and different lubricating fluids (conductive and nonconductive), which are used to study the influencing factors and the mechanism of anisotropic self‐cleaning and electric‐responsive control of a drop's motion. The results demonstrate the anisotropic self‐cleaning property of these two types of SLIPS is closely related to the interaction between liquid drops, lubricating fluids and dirt, and the conductive lubricating fluids filling the rGO porous film can reduce the response voltage of the electrically driven reversible control of a drop's slide. The uniqueness of this research lies in the use of two different lubricating fluids and graphene materials to prepare anisotropic SLIPS, identify the key factors to achieve an electrically driven system. These studies are essential for advancing the application of electronically responsive SLIPS in the fields of liquid directional transportation, microfluidics, microchips, and other related research. 相似文献
42.
Xiaofei Wang Ju Fang Weiwei Zhu Chuanxin Zhong Dongdong Ye Mingyu Zhu Xiong Lu Yusheng Zhao Fuzeng Ren 《Advanced functional materials》2021,31(20):2010068
Anisotropic hydrogels mimicking the biological tissues with directional functions play essential roles in damage-tolerance, cell guidance and mass transport. However, conventional synthetic hydrogels often have an isotropic network structure, insufficient mechanical properties and lack of osteoconductivity, which greatly limit their applications for bone repair. Herein, inspired by natural bone and wood, a biomimetic strategy is presented to fabricate highly anisotropic, ultrastrong and stiff, and osteoconductive hydrogel composites via impregnation of biocompatible hydrogels into the delignified wood followed by in situ mineralization of hydroxyapatite (HAp) nanocrystals. The well-aligned cellulose nanofibrils endow the composites with highly anisotropic structural and mechanical properties. The strong intermolecular bonds of the aligned cellulose fibrils and hydrogel/wood interaction, and the reinforcing nanofillers of HAp enable the composites remarkable tensile strength of 67.8 MPa and elastic modulus of 670 MPa, three orders of magnitude higher than those of conventional alginate hydrogels. More importantly, the biocompatible hydrogel together with aligned HAp nanocrystals could effectively promote osteogenic differentiation in vitro and induce bone formation in vivo. The bone ingrowth into the hydrogel composite scaffold also yields good osteointegration. This study provides a low-cost, eco-friendly, feasible, and scalable approach for fabricating anisotropic, strong, stiff, hydrophilic, and osteoconductive hydrogel composites for bone repair. 相似文献
43.
Kang Luan Meijin He Bojie Xu Pengwei Wang Jiajia Zhou Binbin Hu Lei Jiang Huan Liu 《Advanced functional materials》2021,31(26):2010634
In nature, the feathers of the goose Anser cygnoides domesticus stay superhydrophobic over a long term, thought as the main reason for keeping the surface clean. However, contaminants, especially those that are oleophilic or trapped within textures, cannot be removed off the superhydrophobic feathers spontaneously. Here, a different self-cleaning strategy based on superhydrophilic feathers is revealed that is imparted by self-coating of the amphiphilic saliva, which enables removing away low-surface-tension and/or small-size contaminants by forming directional water sheeting depending on their unique anisotropic microstructures. Particularly, the surface superhydrophilicity is switchable to superhydrophobicity upon exposure to air for maintaining a clean surface for a long time, which is further enhanced by coating with self-secreted preening oil. By alternate switching between a transient superhydrophilicity and a long-term stable superhydrophobicity, the goose feathers exhibit an integrated smart self-cleaning strategy, which is also shared by other aquatic birds. An attractive point is the re-entrant structure of the feathers, which facilitates not only liquid spreading on superhydrophilic feathers, but also long-term stability of the cleaned surface by shedding water droplets off the superhydrophobicity feathers. Thus, artificial self-cleaning microtextures are developed. The result renews the common knowledge on the self-cleaning of aquatic bird feathers, offering inspiration for developing bioinspired self-cleaning microtextures and coatings. 相似文献
44.
Bioinspired nanocomposites with high levels of reinforcement hold great promise for future, green lightweight, and functional engineering materials, but they suffer from slow, tedious, and nonscalable preparation routes, that typically only lead to very thin films. A rapid and facile dry powder processing technique is introduced to generate bioinspired nanocomposite materials at high fractions of reinforcements (50 wt%) and with millimeter scale thickness. The process uses powder drying of vitrimer-coated nanoplatelets (nanoclay and MXene) from aqueous solution and subsequent hot-pressing. As a method of choice in industrial lightweight composite materials engineering, hot-pressing underscores a high potential to translate this approach to actual products. The use of the vitrimer chemistry with temperature-activated bond shuffling is important to facilitate smooth integration into the nanocomposite design, leading to layered nacre-inspired nanocomposites with nanoscale hard/soft order traced by X-ray diffraction and excellent mechanical properties investigated using flexural tests. Recycling by grinding and hot-pressing is possible without property loss. The compatibility with existing composite processing techniques, scalable thickness and dimensions, and recyclability open considerable opportunities for translating bioinspired nanocomposites to real-life applications. 相似文献
45.
Bin Feng Xin Jiang Guisheng Zou Wengan Wang Tianming Sun Heng Yang Guanlei Zhao Mingye Dong Yu Xiao Hongwei Zhu Lei Liu 《Advanced functional materials》2021,31(29):2102359
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering. 相似文献
46.
Yuan Liu Baodong Chen Wei Li Lulu Zu Wei Tang Zhong Lin Wang 《Advanced functional materials》2021,31(38):2104770
A sustainable power source is a key technical challenge for practical applications of electrically responsive soft robots, especially the required voltage is over several thousand volts. Here, a practicable new technology, triboelectric soft robot (TESR) system with the primary characteristics of power source from mechanical energy, is developed. At its heart is TESR with bioinspired architectures made of soft-deformable body and two triboelectric adhesion feet, which is driven and accurately controlled through triboelectric effect, while reaching maximum crawling speeds of 14.9 mm s−1 on the acrylic surface. The characteristics of the TESR, including displacement and force, are tested and simulated under the power of a rotary freestanding triboelectric nanogenerator (RF-TENG). Crawling of TESR is successfully realized on different materials surfaces and different angle slopes under the driven of RF-TENG. Furthermore, a real-time visual monitoring platform, in which TESR carries a micro camera to transmit images in a long narrow tunnel, is also achieved successfully, indicating that it can be used for fast diagnosis in an area inaccessible to human beings in the future. This study offers a new insight into the sustainable power source technologies suitable for electrically responsive soft robots and contributes to expanding the applicability of TENGs. 相似文献
47.
Minho Seong Insol Hwang Seongjin Park Hyejin Jang Geonjun Choi Jaeil Kim Shin-Kwan Kim Gun-Ho Kim Junyeob Yeo Hoon Eui Jeong 《Advanced functional materials》2021,31(48):2107023
Minimizing the thermal contact resistance (TCR) at the boundary between two bodies in contact is critical in diverse thermal transport devices. Conventional thermal contact methods have several limitations, such as high TCR, low interfacial adhesion, a requirement for high external pressure, and low optical transparency. Here, a self-interfacing flexible thermal device (STD) that can form robust van der Waals mechanical contact and low-resistant thermal contact to planar and non-planar substrates without the need for external pressure or surface modification is presented. The device is based on a distinctive integration of a bioinspired adhesive architecture and a thermal transport layer formed from percolating silver nanowire (AgNW) networks. The proposed device exhibits a strong attachment (maximum 538.9 kPa) to target substrates while facilitating thermal transport across the contact interface with low TCR (0.012 m2 K kW−1) without the use of external pressure, thermal interfacial materials, or surface chemistries. 相似文献
48.
Hui Liu Weiyi Zhao Yunlei Zhang Xiaoduo Zhao Shuanhong Ma Michele Scaraggi Feng Zhou 《Advanced functional materials》2024,34(16):2310271
The simultaneous achievement -under physiologically high contact pressures- of ultra-low friction, nearly zero surface wear, and long lifetime in the development of human cartilage prosthetics is still a big challenge. In this work, inspired by the unique lubrication mechanism of scallion leaves resulting from the synergy of oriented surface micro-topography and mucus hydration, a novel layered soft hydrogel as cartilage prototype is developed by chemically embedding thick hydrophilic polyelectrolyte brush chains into the sub-surface of a high strength anisotropic hydrogel bulk. It exhibits an anisotropic polymer network with unique mechanical properties (tensile strength: 8.3 to 23.7 MPa; elastic modulus 20.0 to 30.0 MPa), anisotropic hydrated surface texture, super-lubricity, and excellent wear resistance. Thydrogel architecture can exhibit low coefficient of friction (COF) less than ≈0.01 under a wide range of contact stresses (0.2 to 2.4 MPa) and maintain cartilage-like long-lasting (50k sliding cycles) robust super-lubricity (COF ≈ 0.006) and nearly-zero wear under high contact pressure (≈2.4 MPa) condition. Theoretical underpinning reveals how multiscale surface anisotropy, mechanics, and hydration regulate super-low friction generation. This work provides a novel design paradigm for the fabrication of robust soft materials with extraordinary lubricity as implantable prototypes and coatings. 相似文献
49.
Haozhen Dou Mi Xu Bin Jiang Guobin Wen Lei Zhao Baoyu Wang Aiping Yu Zhengyu Bai Yongli Sun Luhong Zhang Zhongwei Chen Zhongyi Jiang 《Advanced functional materials》2019,29(50)
The implementation of membrane technology to replace or combine with energy‐intensive cryogenic distillation for precise separation of ethylene/ethane mixture proves an extremely important yet highly challenging task. Inspired by the hierarchical structure and facilitated gas transport of biological membranes, a highly selective ethylene/ethane separation membrane is explored through the fixation of a silver ion carrier and the impregnation of ionic liquid within 2D nanochannels of graphene oxide laminate, where plenty of ethylene‐permeating in‐plane nano‐wrinkles and ethylene‐facilitated plane‐to‐plane nanochannels are constructed. By virtue of synergistic effects of molecular sieving and carrier‐facilitated transport, an unprecedented combination of high ethylene permeance (72.5 GPU) and superhigh ethylene/ethane selectivity (215) is achieved, out‐performing currently reported advanced membranes. Moreover, molecular dynamics simulations verify a favorable membrane nanostructure for fast and selective transport of ethylene molecules. This bioinspired approach with dual transport mechanisms may open novel avenues to the design of high‐performance membranes for precise molecular separation. 相似文献
50.
Dr. W.-Matthias Leeder Dr. Fabian Giehler Juliane Joswig Prof. Dr. H. Ulrich Göringer 《Chembiochem : a European journal of chemical biology》2019,20(10):1251-1255
Humans have evolved a natural immunity against Trypanosoma brucei infections, which is executed by two serum (lipo)protein complexes known as trypanolytic factors (TLF). The active TLF ingredient is the primate-specific apolipoprotein L1 (APOL1). The protein has a pore-forming activity that kills parasites by lysosomal and mitochondrial membrane fenestration. Of the many trypanosome subspecies, only two are able to counteract the activity of APOL1; this illustrates its evolutionarily optimized design and trypanocidal potency. Herein, we ask whether a synthetic (syn) TLF can be synthesized by using the design principles of the natural TLF complexes but with different chemical building blocks. We demonstrate the stepwise development of triterpenoid–peptide conjugates, in which the triterpenoids act as a cell-binding, uptake and lysosomal-transport modules and the synthetic peptide GALA acts as a pH-sensitive, pore-forming lysolytic toxin. As designed, the conjugate kills infective-stage African trypanosomes through lysosomal lysis thus demonstrating a proof-of-principle for the bioinspired, forward-design of a synTLF. 相似文献