首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   59篇
  国内免费   36篇
综合类   2篇
化学工业   160篇
金属工艺   32篇
机械仪表   5篇
建筑科学   17篇
轻工业   9篇
无线电   57篇
一般工业技术   71篇
冶金工业   28篇
原子能技术   1篇
自动化技术   7篇
  2024年   1篇
  2023年   14篇
  2022年   39篇
  2021年   71篇
  2020年   31篇
  2019年   25篇
  2018年   27篇
  2017年   18篇
  2016年   16篇
  2015年   19篇
  2014年   21篇
  2013年   19篇
  2012年   6篇
  2011年   34篇
  2010年   9篇
  2009年   3篇
  2008年   10篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1988年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有389条查询结果,搜索用时 15 毫秒
81.
Epithelial ovarian cancer has the highest mortality among all gynecological malignancies. The main reasons for high mortality are late diagnosis and development of resistance to chemotherapy. Resistance to chemotherapeutic drugs can result from altered expression of drug-resistance genes regulated by miRNA. The main goal of our study was to detect differences in miRNA expression levels in two doxorubicin (DOX)- and two topotecan (TOP)-resistant variants of the A2780 drug-sensitive ovarian cancer cell line by miRNA microarray. The next aim was to recognize miRNAs as factors responsible for the regulation of drug-resistance genes. We observed altered expression of 28 miRNA that may be related to drug resistance. The upregulation of miR-125b-5p and miR-935 and downregulation of miR-218-5p was observed in both DOX-resistant cell lines. In both TOP-resistant cell lines, we noted the overexpression of miR-99a-5p, miR-100-5p, miR-125b-5p, and miR-125b-2-3p and decreased expression of miR-551b-3p, miR-551b-5p, and miR-383-5p. Analysis of the targets suggested that expression of important drug-resistant genes such as the collagen type I alpha 2 chain (COL1A2), protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Roundabout Guidance Receptor 2 (ROBO2), myristoylated alanine-rich C-kinase substrate (MARCK), and the ATP-binding cassette subfamily G member 2 (ABCG2) can be regulated by miRNA.  相似文献   
82.
Mathematical modeling of signaling pathways and regulatory networks has been supporting experimental research for some time now. Sensitivity analysis, aimed at finding model parameters whose changes yield significantly altered cellular responses, is an important part of modeling work. However, sensitivity methods are often directly transplanted from analysis of technical systems, and thus, they may not serve the purposes of analysis of biological systems. This paper presents a novel sensitivity analysis method that is particularly suited to the task of searching for potential molecular drug targets in signaling pathways. Using two sample models of pathways, p53/Mdm2 regulatory module and IFN-β-induced JAK/STAT signaling pathway, we show that the method leads to biologically relevant conclusions, identifying processes suitable for targeted pharmacological inhibition, represented by the reduction of kinetic parameter values. That, in turn, facilitates subsequent search for active drug components.  相似文献   
83.
We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η6-arene)Ru(N,N′)L][PF6]2 containing arene = p-cymene, N,N′ = bipyridine, and L = pyridine meta- with methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)naphthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λmax = 418 nm) compared with C1 and C2 (λmax = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC50 = 10.55 ± 0.30 μM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT).  相似文献   
84.
Doxorubicin (Dox) is a widely used fluorescent chemotherapy drug. Its primary delivery systems, based on physical adsorption to silica nanoparticles, can lead to low drug loading. Direct loading of Dox via covalent bonds during the formation of silica nanoparticles has never been reported. In this work, we designed and synthesized a silane-borate precursor, which contains not only an alkoxysilane moiety to form organosilica nanoparticles but also a phenylboronic acid moiety to react with diol-containing compounds. Using this compound, the covalent loading of Dox during the preparation of organosilica nanoparticles was effectively realized with a high drug loading content up to 22.4 %. Further modification by hyaluronic acid (HA) bestowed the Si-Dox@HA nanoparticles with the ability to target CD44-overexpressing cancer cells. The Si-Dox@HA nanoparticles exhibited H2O2-responsive release of about 80 % Dox and displayed seven-fold selectivity for killing cancer cells over normal cells, relative to Dox and Si-Dox nanoparticles. Moreover, these Si-Dox@HA nanoparticles are also suitable for targeted fluorescence imaging of CD44-overexpressing cancer cells.  相似文献   
85.
Glioblastoma (GBM), the most commonly occurring primary tumor arising within the central nervous system, is characterized by high invasiveness and poor prognosis. In spite of the improvement in surgical techniques, along with the administration of chemo- and radiation therapy and the incessant investigation in search of prospective therapeutic targets, the local recurrence that frequently occurs within the peritumoral brain tissue makes GBM the most malignant and terminal type of astrocytoma. In the current study, we investigated both GBM and peritumoral tissues obtained from 55 hospitalized patients and the expression of three molecules involved in the onset of resistance/unresponsiveness to chemotherapy: O6-methylguanine methyltransferase (MGMT), breast cancer resistance protein (BCRP1), and A2B5. We propose that the expression of these molecules in the peritumoral tissue might be crucial to promoting the development of early tumorigenic events in the tissue surrounding GBM as well as responsible for the recurrence originating in this apparently normal area and, accordingly, for the resistance to treatment with the standard chemotherapeutic regimen. Notably, the inverse correlation found between MGMT expression in peritumoral tissue and patients’ survival suggests a prognostic role for this protein.  相似文献   
86.
In high-risk non-muscle invasive bladder cancer (HR-NMIBC), patient outcome is negatively affected by lack of response to Bacillus-Calmette Guérin (BCG) treatment. Lack of response to cisplatin-based neoadjuvant chemotherapy and cisplatin ineligibility reduces successful treatment outcomes in muscle-invasive bladder cancer (MIBC) patients. The effectiveness of PD-1/PD-L1 immune checkpoint inhibitors (ICI) in metastatic disease has stimulated its evaluation as a treatment option in HR-NMIBC and MIBC patients. However, the observed responses, immune-related adverse events and high costs associated with ICI have provided impetus for the development of methods to improve patient stratification, enhance anti-tumorigenic effects and reduce toxicity. Here, we review the challenges and opportunities offered by PD-1/PD-L1 inhibition in HR-NMIBC and MIBC. We highlight the gaps in the field that need to be addressed to improve patient outcome including biomarkers for response stratification and potentially synergistic combination therapy regimens with PD-1/PD-L1 blockade.  相似文献   
87.
Cisplatin and oxaliplatin are treatment options for a variety of cancer types. While highly efficient in killing cancer cells, both chemotherapeutics cause severe side effects, e.g., peripheral neuropathies. Using a cell viability assay, a mitochondrial stress assay, and live-cell imaging, the effects of cis- or oxaliplatin on the mitochondrial function, reactive oxygen species (ROS) production, and mitochondrial and cytosolic calcium concentration of transient receptor potential ankyrin 1 (TRPA1)- or vanilloid 1 (TRPV1)-positive dorsal root ganglion (DRG) neurons of adult Wistar rats were determined. Mitochondrial functions were impaired after exposure to cis- or oxaliplatin by mitochondrial respiratory chain complex I-III inhibition. The basal respiration, spare respiratory capacity, and the adenosine triphosphate (ATP)-linked respiration were decreased after exposure to 10 µM cis- or oxaliplatin. The ROS production showed an immediate increase, and after reaching the peak, ROS production dropped. Calcium imaging showed an increase in the cytosolic calcium concentration during exposure to 10 µM cis- or oxaliplatin in TRPA1- or TRPV1-positive DRG neurons while the mitochondrial calcium concentration continuously decreased. Our data demonstrate a significant effect of cis- and oxaliplatin on mitochondrial function as an early event of platinum-based drug exposure, suggesting mitochondria as a potential target for preventing chemotherapy-induced neuropathy.  相似文献   
88.
The delivery of therapeutic cancer agents using nanomaterials has recently attracted much attention. Although encouraging progress with chemotherapeutics has been made, tumor treatment response remains unsatisfactory. To address this concern, we constructed a new micellar nanocomplex by covalently conjugating hyaluronic acid (HA) with an iron oxide nanoparticle (IONP). When an external magnetic field was applied to the tumor area, HA–IONP specifically accumulated in the tumor, due to the strong IONP magnetism. In addition, HA was shown to bind to cluster determinant 44 (CD44), which is overexpressed on tumor cells. With combined magnetic, CD44, and enhanced permeability retention (EPR) targeting, the efficient delivery of HA–IONP to the tumor is expected to enhance cancer treatment efficiency. After encapsulation of the chemotherapy drug homocamptothecin (HCPT), the theranostic potency of HA–IONP/HCPT (HIH) was investigated both in vitro and in vivo. The improved tumor homing behavior of HIH was observed by magnetic resonance imaging (MRI) when an external magnetic field was used. Moreover, HIH showed remarkable tumor ablation efficiency, with magnetic targeting after 3 mg kg?1 intravenous administration (equivalent dose of free HCPT), and the tumors almost disappeared after treatment. No obvious systemic toxicity was detected. This excellent biocompatibility and tumor targetability suggests that HIH is a promising theranostic nanocomplex with great translational potency. Application of the HA–IONP platform could also be extended to delivery of other hydrophobic chemotherapy drugs or phototherapy agents.  相似文献   
89.
本文介绍了一种基于UC/OS-Ⅱ的智能型全自动腹腔灌注热化疗的系统构成和工作原理.通过引入UC/OS-Ⅱ实时嵌入式操作系统,利用其多任务管理、实时性、任务间通信等优点,实现了程序的模块化,提高了系统的稳定性、可靠性,使系统具备多功能性、处理及时和易于控制.  相似文献   
90.
A biocompatible and modifiable protein nanocarrier is a promising candidate for tumor targeted drug delivery. However, it is challenging to effectively load hydrophobic drugs, not to mention to upload both hydrophilic and hydrophobic drugs on one protein nanocarrier. Here, an amphiphilic multi-drug loading protein nanocage (Am-PNCage) is presented which is generated by replacing the fifth helix of human H-ferritin (HFn) subunit with a functional motif composed of hydrophobic–hydrophilic-RGD peptides. The Am-PNCage possesses a dual targeting property resulting from the intrinsic CD71 targeting ability of HFn and the integrin α vβ3 targeting ability of displayed RGD peptides. Through the hydrophilic drug entry channel in the protein nanocage and hydrophobic peptides displayed on the outer surface, amphiphilic epirubicin (132)/camptothecin (50) are stereoscopically loaded into the inner cavity/outer protein shell, respectively, for one Am-PNCage, exhibiting cascade drug release pattern. The dual-targeted Am-PNCage promotes the loaded drugs penetrating various 3D tumor models in vitro, as well as traversing the brain blood barrier and accumulating in brain tumors in vivo. Moreover, the drug loaded Am-PNCage shows reduced side effects and significantly enhances synergistic efficacy against brain tumor, metastatic liver cancers, and drug resistant breast tumor. Thus, the Am-PNCage represents a novel promising protein nanocarrier for targeted combination chemotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号