全文获取类型
收费全文 | 33811篇 |
免费 | 4374篇 |
国内免费 | 2390篇 |
专业分类
电工技术 | 1051篇 |
综合类 | 2318篇 |
化学工业 | 7042篇 |
金属工艺 | 537篇 |
机械仪表 | 1207篇 |
建筑科学 | 409篇 |
矿业工程 | 1272篇 |
能源动力 | 346篇 |
轻工业 | 11270篇 |
水利工程 | 160篇 |
石油天然气 | 891篇 |
武器工业 | 174篇 |
无线电 | 2961篇 |
一般工业技术 | 1218篇 |
冶金工业 | 1347篇 |
原子能技术 | 485篇 |
自动化技术 | 7887篇 |
出版年
2024年 | 257篇 |
2023年 | 625篇 |
2022年 | 1081篇 |
2021年 | 1309篇 |
2020年 | 1483篇 |
2019年 | 1224篇 |
2018年 | 1196篇 |
2017年 | 1360篇 |
2016年 | 1468篇 |
2015年 | 1646篇 |
2014年 | 2129篇 |
2013年 | 2559篇 |
2012年 | 3365篇 |
2011年 | 2999篇 |
2010年 | 2063篇 |
2009年 | 1913篇 |
2008年 | 1836篇 |
2007年 | 2254篇 |
2006年 | 1940篇 |
2005年 | 1482篇 |
2004年 | 1134篇 |
2003年 | 985篇 |
2002年 | 735篇 |
2001年 | 592篇 |
2000年 | 516篇 |
1999年 | 425篇 |
1998年 | 344篇 |
1997年 | 318篇 |
1996年 | 236篇 |
1995年 | 199篇 |
1994年 | 143篇 |
1993年 | 122篇 |
1992年 | 128篇 |
1991年 | 86篇 |
1990年 | 81篇 |
1989年 | 59篇 |
1988年 | 42篇 |
1987年 | 44篇 |
1986年 | 35篇 |
1985年 | 31篇 |
1984年 | 29篇 |
1983年 | 21篇 |
1982年 | 14篇 |
1981年 | 13篇 |
1980年 | 13篇 |
1979年 | 7篇 |
1978年 | 7篇 |
1977年 | 6篇 |
1959年 | 7篇 |
1951年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
在人脸识别问题中,如何提取具有鲁棒性的人脸特征和降低特征维数是两个关键。根据二维主成分分析方法直接利用二维图像来构建方差矩阵的优点,引入了类内均值的思想,首先计算每类训练样本的类内平均脸,并用它对各类样本进行规范化处理,有效扩大了类间样本的差别,缩小了类内样本的差别,进行协方差矩阵的计算并提取最优投影特征向量进行人脸图像的特征提取,通过在水平和垂直两个方向上顺序执行两次提取和投影的操作,极大压缩了特征的维数,克服了传统二维主成分算法的不足。在人脸库ORL和Yale的试验对比结果表明,方法对光照与表情变化有较好的鲁棒性,能实现较高的识别率,因此在实际中具有一定的应用意义。 相似文献
52.
53.
低质量指纹图像的特征提取和变形指纹的匹配是当前指纹识别研究中的两个主要问题。很多算法在特征提取时不区分高、低质量区域,结果在高质量区域耗费了过多的运算时间和计算资源。本文提出了一种基于图像质量分区的指纹特征提取方法,先用一种简单的图像区域质量计算方法评价各区域的图像质量,然后对高质量区域直接从灰度图像跟踪纹线、提取节点,对低质量区域执行传统的方向计算、增强、二值化和细化后提取特征。实验结果表明,该方法不仅提高了特征提取的速度,在准确性上也有所提高。 相似文献
54.
脉冲宽度调制(PWM)整流电路结构日益复杂,对其可靠运行提出了更高的要求;对局域均值分解(LMD)用于PWM整流电路的故障特征提取进行研究,提出一种基于LMD和加权频带能量法的特征提取新方法;该方法通过逐步抽取调频调幅成分将故障信号在频域上展开,然后基于信号能量的频带分布特点,充分考虑各频带成分与故障的相关性,构造故障特征向量,实现特征提取;最后以PWM整流电路为例进行仿真,相电压380V,仿真时间0.5s,0.1s时注入故障;结果表明,该方法能有效地提取故障信号的特征,并降低特征向量的维数。 相似文献
55.
Kun Yang Lei Zhao Xianghui Wang Mingyang Zhang Linyan Xue Shuang Liu Kun Liu 《计算机、材料和连续体(英文)》2023,75(3):5159-5176
The diagnosis of COVID-19 requires chest computed tomography (CT). High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease, so it is of clinical importance to study super-resolution (SR) algorithms applied to CT images to improve the resolution of CT images. However, most of the existing SR algorithms are studied based on natural images, which are not suitable for medical images; and most of these algorithms improve the reconstruction quality by increasing the network depth, which is not suitable for machines with limited resources. To alleviate these issues, we propose a residual feature attentional fusion network for lightweight chest CT image super-resolution (RFAFN). Specifically, we design a contextual feature extraction block (CFEB) that can extract CT image features more efficiently and accurately than ordinary residual blocks. In addition, we propose a feature-weighted cascading strategy (FWCS) based on attentional feature fusion blocks (AFFB) to utilize the high-frequency detail information extracted by CFEB as much as possible via selectively fusing adjacent level feature information. Finally, we suggest a global hierarchical feature fusion strategy (GHFFS), which can utilize the hierarchical features more effectively than dense concatenation by progressively aggregating the feature information at various levels. Numerous experiments show that our method performs better than most of the state-of-the-art (SOTA) methods on the COVID-19 chest CT dataset. In detail, the peak signal-to-noise ratio (PSNR) is 0.11 dB and 0.47 dB higher on CTtest1 and CTtest2 at SR compared to the suboptimal method, but the number of parameters and multi-adds are reduced by 22K and 0.43G, respectively. Our method can better recover chest CT image quality with fewer computational resources and effectively assist in COVID-19. 相似文献
56.
During the past decade, feature extraction and knowledge acquisition based on video analysis have been extensively researched and tested on many applications such as closed-circuit television(CCTV)data analysis, large-scale public event control, and other daily security monitoring and surveillance operations with various degrees of success. However, since the actual video process is a multi-phased one and encompasses extensive theories and techniques ranging from fundamental image processing, computational geometry and graphics, and machine vision, to advanced artificial intelligence, pattern analysis, and even cognitive science, there are still many important problems to resolve before it can be widely applied. Among them, video event identification and detection are two prominent ones. Comparing with the most popular frame-to-frame processing mode of most of today's approaches and systems, this project reorganizes video data as a 3D volume structure that provides the hybrid spatial and temporal information in a unified space. This paper reports an innovative technique to transform original video frames to 3D volume structures denoted by spatial and temporal features. It then highlights the volume array structure in a so-called "pre-suspicion" mechanism for a later process. The focus of this report is the development of an effective and efficient voxel-based segmentation technique suitable to the volumetric nature of video events and ready for deployment in 3D clustering operations. The paper is concluded with a performance evaluation of the devised technique and discussion on the future work for accelerating the pre-processing of the original video data. 相似文献
57.
A hybrid data-fusion system using modal data and probabilistic neural network for damage detection 总被引:1,自引:0,他引:1
This paper addresses a novel hybrid data-fusion system for damage detection by integrating the data fusion technique, probabilistic neural network (PNN) models and measured modal data. The hybrid system proposed consists of three models, i.e. a feature-level fusion model, a decision-level fusion model and a single PNN classifier model without data fusion. Underlying this system is the idea that we can choose any of these models for damage detection under different circumstances, i.e. the feature-level model is preferable to other models when enormous data are made available through multi-sensors, whereas the confidence level for each of multi-sensors must be determined (as a prerequisite) before the adoption of the decision-level model, and lastly, the single model is applicable only when data collected is somehow limited as in the cases when few sensors have been installed or are known to be functioning properly. The hybrid system is suitable for damage detection and identification of a complex structure, especially when a huge volume of measured data, often with uncertainties, are involved, such as the data available from a large-scale structural health monitoring system. The numerical simulations conducted by applying the proposed system to detect both single- and multi-damage patterns of a 7-storey steel frame show that the hybrid data-fusion system cannot only reliably identify damage with different noise levels, but also have excellent anti-noise capability and robustness. 相似文献
58.
59.
60.