首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   17篇
  国内免费   5篇
电工技术   6篇
综合类   6篇
化学工业   11篇
金属工艺   8篇
机械仪表   15篇
能源动力   1篇
水利工程   1篇
石油天然气   2篇
无线电   19篇
一般工业技术   34篇
自动化技术   13篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   7篇
  2016年   10篇
  2015年   7篇
  2014年   6篇
  2013年   6篇
  2012年   5篇
  2011年   14篇
  2010年   11篇
  2009年   15篇
  2008年   9篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  1995年   1篇
排序方式: 共有116条查询结果,搜索用时 93 毫秒
51.
Lab-on-a-chip systems aim to integrate laboratory operations on a miniaturized device with broad application prospects in the field of point-of-care testing. However, bulky peripheral power resources, such as high-voltage supplies, function generators, and amplifiers, hamper the commercialization of the system. In this work, a portable, self-powered microparticle manipulation platform based on triboelectrically driven dielectrophoresis (DEP) is reported. A rotary freestanding triboelectric nanogenerator (RF-TENG) and rectifier/filter circuit supply a high-voltage direct-current signal to form a non-uniform electric field within the microchannel, realizing controllable actuation of the microparticles through DEP. The operating mechanism of this platform and the control performance of the moving particles are systematically studied and analyzed. Randomly distributed particles converge in a row after passing through the serpentine channel and various particles are separated owing to the different DEP forces. Ultimately, the high-efficiency separation of live and dead yeast cells is achieved using this platform. RF-TENG as the power source for lab-on-a-chip exhibits better safety and portability than traditional high-voltage power sources. This study presents a promising solution for the commercialization of lab-on-a-chip.  相似文献   
52.
A nanoscale insulator‐based dielectrophoresis (iDEP) technique is developed for rapid enrichment of proteins and highly sensitive immunoassays. Dense arrays of nanorods (NDs) by oblique angle deposition create a super high electric field gradient of 2.6 × 1024 V2 m?3 and the concomitant strong dielectrophoresis force successfully traps small proteins at a bias as low as 5 V. 1800‐fold enrichment of bovine serum albumin protein at a remarkable rate of up to 180‐fold s?1 is achieved using oxide coated Ag nanorod arrays with pre‐patterned sawtooth electrodes. Based on this system, an ultrasensitive immunoassay of mouse immunoglobulin G is demonstrated with a reduction in the limit of detection from 5.8 ng mL?1 (37.6 pM) down to 275.3 fg mL?1 (1.8 f M), compared with identical assays performed on glass plates. This methodology is also applied to detect a cancer biomarker prostate‐specific antigen spiked in human serum with a detection limit of 2.6 ng mL?1. This high sensitivity results from rapid biomarker enrichment and metal enhanced fluorescence through the integration of nanostructures. The concentrated proteins also accelerate binding kinetics and enable signal saturation within 1 min. Given the easy fabrication process, this nanoscale iDEP system provides a highly sensitive detection platform for point‐of‐care diagnostics.  相似文献   
53.
We report here a rapid formation of island arrays with nanoparticles on and within polycarbonate (PC) membrane based on positive dielectrophoresis (p-DEP). For the fabrication of the patterning device, PC membranes with 10 μm thickness and 100, 200 or 400 nm pore size were sandwiched by an upper bare ITO substrate and a lower disk array ITO electrode which was defined by insulation layer of negative photoresist. A suspension of 190 nm diameter polymethylmethacrylate (PMMA) particles containing rhodamine 6G (R6G) fluorescent molecules was introduced into the device between the upper ITO and the PC membrane. AC electric signal (typically 20 Vpp, 70 kHz) was then applied to the ITO, resulting in the formation of island patterns with high electric fields gradient regions on and in the PC membrane. Particles patterns with island shape were assembled on membrane within 1 s after applying AC electric field. The electrodes can be used repeatedly as the template of subsequent patterning. Although, particles islands were only formed on the PC membrane with 100 and 200 nm diameter pores, the particles penetrated the membrane with 400 nm pores to form patterns on the back surface. Since the strong electric fields were formed at the edges of disks, particles on the back surface were the projection of the disk array of ITO to form ring shapes. The unique structure with particles was explained based on the simulation of electric field distribution. The present proposal offers a procedure to fabricate particle arrays with extremely simple, rapid and highly reproducible manner.  相似文献   
54.
We report a microfluidic device for rapid and efficient concentration of micro/nanoparticles with direct current dielectrophoresis (DC DEP). The concentrator is composed of a series of microchannels constructed with PDMS-insulating microstructures for efficiently focusing the electric field in the flow direction to provide high field strength and gradient. The location of the trapped and concentrated particles depends on the strength of the electric field applied. Both ‘streaming DEP’ and ‘trapping DEP’ simultaneously take place within the concentrator at different regions. The former occurs upstream and is responsible for continuous transport of the particles, whereas the latter occurs downstream and rapidly traps the particles delivered from upstream. The performance of the device is demonstrated by successfully concentrating fluorescent nanoparticles. The described microfluidic concentrator can be implemented in applications where rapid concentration of targets is needed such as concentrating cells for sample preparation and concentrating molecular biomarkers for detection.  相似文献   
55.
Humidity sensors have multi-walled carbon nanotubes (MWNTs) as the sensing material is demonstrated. The sensor was fabricated on a silicon dioxide coated silicon wafer with metal electrodes. MWNTs were deposited and interlinked with the electrodes by means of the dielectrophoresis technique. The sensing device has the function of a hygrometer when measuring resistance variations to the local relative humidity percentage (RH%) through MWNTs. By measuring the MWNT resistances, we find that higher RH% results in a decrease of conductivity. The results indicate that electron transports in MWNTs are affected by water molecules adsorption on the outermost nanotube surface. A miniature thermocouple sensor was also fabricated and integrated with the humidity sensor. This allowed us to simultaneously sense environmental humidity and temperature. Hence, accurate humidity measurements were achieved with this prototype by calibrating the electrical resistance and temperature levels to carry out the tests with the humidity percentages.  相似文献   
56.
本文从理论和实验两方面,研究了介电泳技术中SiC纳米线溶剂的选择。从介电泳力、介电泳力矩、溶剂的挥发性和毒性角度分析,发现异丙醇是合适的SiC纳米线溶剂。以异丙醇作为溶剂,利用介电泳技术实现了SiC纳米线的定向排列,并得到纳米线薄膜。SiC纳米线溶液浓度分别为0.1μg/μL,0.3μg/μL, 0.5μg/μL时,得到定向排列纳米线的密度分别为 2/μm,4/μm,6/μm。并且利用密度为6/μm的SiC纳米线薄膜制备了晶体管,该晶体管的迁移率为13.4 cm2/V?s。  相似文献   
57.
The electric fields employed for such work are generated using chips, such as planar linear interdigitated arrays or two parallel arrays. However, chip geometries usually affect the investigation of dielectrophoresis (DEP) and electrorotation (ER) significantly, and even may misdirect the theoretical prediction. In order to understand the electrodes geometries effect and provide a suitable range of parameters, three-dimensional simulations for the DEP and ER characterizations on the quadrupolar hyperbolical electrodes are carried out. Influences of the electrodes gaps, cell height, work region, energized voltage and frequencies for the DEP and ER manipulations are analyzed, and the analysis results show that the gaps of the electrodes and the cell height have enormous effects, but the work region is not so important. Moreover, depending on the theoretical analysis, ER experiments for polystyrene microspheres with the diameter of 20 ~m are carried out on two kinds of chips. The experimental results show that the microspheres rotate in the counter-field direction and the maximum rotation speed appears in the megahertz range. In addition, the experimental results are compared with the simulation results, showing that the three-dimensional simulations considering the chip geometries are more accurate than the two-dimensional predictions. This paper provides a new understanding for the theoretical predictions of DEP and ER manipulations, which decreases the difference of the theoretical and experimental results significantly, and will be significant for the lab chip research.  相似文献   
58.
This article examines the effects and interactions of shear rate, shear strain on electrical and flow properties of pharmaceutical blends. An unexpectedly strong relation between the flow and passive electrical properties of powders is observed to depend on the shear history of the powder bed. Charge density, impedance, dielectrophoresis, flow index, and dilation were measured for several pharmaceutical blends after they were subjected to a controlled shear environment. It was found that the increase in the shear strain intensified the electrical properties for blends that did not contain MgSt. The opposite effect was found in blends lubricated with MgSt. Different shear conditions resulted in different correlations between flow index and dilation. Flow properties of powders were found to improve with continuous exposure to shear strain. It was also found that flow properties correlated to charge acquisition and impedance for different shear treatments. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   
59.
We present a novel method, implemented in the form of a microfluidic device, for arraying and analyzing large populations of single cells. The device contains a large array of electroactive microwells where manipulation and analysis of large population of cells are carried out. On the device, single cells can be actively trapped in the microwells by dielectrophoresis (DEP) and then lysed by electroporation (EP) for subsequent analysis of the confined cell lysates. The DEP force in the selected dimensions of the microwells could achieve efficient trapping in nearly all the microwells (95%) in less than three minutes. Moreover, the positions of the cells in the microwells are maintained even when unstable flow of liquid is applied. This makes it possible to exchange the DEP buffer to a solution that will be subsequently used for stimulating or analyzing the trapped cells. After closing the microwells, EP is conducted to lyse the trapped cells by applying short electric pulses. Tight enclosure is critical to prevent dilution, diffusion and cross contamination of the cell lysates. We demonstrated the feasibility of our approach with an enzymatic assay measuring the intracellular-galactosidase activity. The use of this method should greatly help analysis of large populations of cells at the single-cell level. Furthermore, the method offers rapidity in the trapping and analysis of multiple cell types in physiological conditions that will be important to ensure the relevance of single cell analyses.  相似文献   
60.
A challenge in chemical engineering is the separation and purification of rare-earth elements and their compounds. We report the design and manufacture of a dielectrophoresis (DEP) microchip of microelectrode arrays. This microchip device is constructed in order to use DEP to capture micro-particles of rare-earth oxides in petroleum. Dielectrophoretic behavior of micro-particles of rare-earth oxides in oil media is explored. The dielectrophoretic effects of particles under different conditions are investigated. It is showed that the prepared microchip is suitable for use in the investigation of dielectrophoretic responses of the rare-earth oxides in oil media. The factors such as frequency, particle size and valence of rare-earth metal are discussed. When the frequency is fixed, the translation voltage decreases as particle size increases. Lower frequencies are more effective for manipulation of inorganic particles in oil media. Particles of the same rare-earth oxide with different size, as well as particles of different rare-earth oxides, are captured in different regions of the field by regulating DEP conditions. This may be a new method for separation and purification of particles of different rare-earth oxides, as well as classification of particles with different size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号