首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61482篇
  免费   6369篇
  国内免费   3383篇
电工技术   3663篇
技术理论   1篇
综合类   4766篇
化学工业   9580篇
金属工艺   3736篇
机械仪表   3621篇
建筑科学   8028篇
矿业工程   1228篇
能源动力   4527篇
轻工业   5896篇
水利工程   935篇
石油天然气   2698篇
武器工业   751篇
无线电   4092篇
一般工业技术   6692篇
冶金工业   2782篇
原子能技术   733篇
自动化技术   7505篇
  2024年   400篇
  2023年   1200篇
  2022年   2113篇
  2021年   2520篇
  2020年   2609篇
  2019年   2239篇
  2018年   2193篇
  2017年   2510篇
  2016年   2563篇
  2015年   2584篇
  2014年   3878篇
  2013年   4265篇
  2012年   4442篇
  2011年   4555篇
  2010年   3435篇
  2009年   3526篇
  2008年   3127篇
  2007年   3879篇
  2006年   3283篇
  2005年   2767篇
  2004年   2297篇
  2003年   1916篇
  2002年   1581篇
  2001年   1318篇
  2000年   1060篇
  1999年   827篇
  1998年   614篇
  1997年   529篇
  1996年   494篇
  1995年   380篇
  1994年   299篇
  1993年   239篇
  1992年   198篇
  1991年   192篇
  1990年   171篇
  1989年   150篇
  1988年   104篇
  1987年   74篇
  1986年   44篇
  1985年   76篇
  1984年   75篇
  1983年   44篇
  1982年   50篇
  1981年   31篇
  1980年   60篇
  1964年   28篇
  1963年   27篇
  1961年   22篇
  1959年   20篇
  1955年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
To enhance the tribological performance of Si3N4/TiC ceramics, MoS2/PTFE composite coatings were deposited on the ceramic substrate through spraying method. The micrographs and basic properties of the MoS2/PTFE coated samples were investigated. Dry sliding friction experiments against WC/Co ball were performed with the coated ceramics and traditional ones. These results showed that the composite coatings could significantly reduce the friction coefficient of ceramics, and protect the substrate from adhesion wear. The primary tribological mechanisms of the coated ceramics were abrasive wear, coating spalling and delamination, and the tribological property was transited from slight wear to serious wear with the increase of load because of the lower surface hardness and shear strength. The possible mechanisms for the effects of MoS2/PTFE composite coatings on the friction performance of ceramics were discussed.  相似文献   
12.
13.
Biomass gasification technology under microwave irradiation is a new and novel method, and the energy conversion performances during the process play a guiding role in improving the energy conversion efficiencies and developing the gasification simulation models. In order to improve the energy utilization efficiency of microwave biomass gasification system, this study investigated and presented the energy conversion performances during biomass gasification process under microwave irradiation, and these were materialized through detailing (a) the energy conversion performance in the microwave heating stage, and (b) the energy conversion performance in the microwave assisted biomass gasification stage. Different forms of energies in the biomass microwave gasification process were calculated by the method given in this study based on the experimental data. The results showed that the useful energy (energy in silicon carbide (SiC), 18.73 kJ) accounted for 31.22% of the total energy input (electrical energy, 60.00 kJ) in the heating stage, and the useful energy (energy in the products, 758.55 kJ) accounted for 63.41% of the total energy input (electrical and biomass energy, 1196.28 kJ) in the gasification stage. During the whole biomass gasification process under microwave irradiation, the useful energy output (energy in the products, 758.55 kJ) accounted for 60.38% of the total energy input (electrical and biomass energy, 1256.28 kJ), and the energy in the gas (523.40 kJ) product played a dominate role in product energy (758.55 kJ). The energy loss mainly included the heat loss in the gas flow (89.20 kJ), magnetron loss (191.80 kJ) and microwave dissipation loss (198.00 kJ), which accounted for 7.10%, 15.27% and 15.76% of the total energy, respectively. The contents detailed in this study not only presented the energy conversion performances during microwave assisted gasification process but also supplied important data for developing gasification simulation models.  相似文献   
14.
15.
Traditionally, in supervised machine learning, (a significant) part of the available data (usually 50%-80%) is used for training and the rest—for validation. In many problems, however, the data are highly imbalanced in regard to different classes or does not have good coverage of the feasible data space which, in turn, creates problems in validation and usage phase. In this paper, we propose a technique for synthesizing feasible and likely data to help balance the classes as well as to boost the performance in terms of confusion matrix as well as overall. The idea, in a nutshell, is to synthesize data samples in close vicinity to the actual data samples specifically for the less represented (minority) classes. This has also implications to the so-called fairness of machine learning. In this paper, we propose a specific method for synthesizing data in a way to balance the classes and boost the performance, especially of the minority classes. It is generic and can be applied to different base algorithms, for example, support vector machines, k-nearest neighbour classifiers deep neural, rule-based classifiers, decision trees, and so forth. The results demonstrated that (a) a significantly more balanced (and fair) classification results can be achieved and (b) that the overall performance as well as the performance per class measured by confusion matrix can be boosted. In addition, this approach can be very valuable for the cases when the number of actual available labelled data is small which itself is one of the problems of the contemporary machine learning.  相似文献   
16.
In the present study, we report an eco-friendly and simple route to design and synthesize novel nanocomposite catalyst based on platinum nanoparticles anchored on binary support of graphitic carbon nitride (g-C3N4) and cobalt-metal-organic framework (ZIF-67). For this purpose, ZIF-67 was prepared by precipitation method and g-C3N4 was prepared through thermal polymerization method. Later, ZIF-67 and g-C3N4 were hybridized through sonication to get homogeneous g–C3N4–ZIF-67 nanocomposite support material. Platinum nanoparticles (PtNPs) were uniformly deposited on g–C3N4–ZIF-67 by an electrochemical method. The as-developed nanocatalyst was characterized by morphological, structural and electrochemical techniques. The electrocatalytic activity of PtNPs@g–C3N4–ZIF-67 nanocatalyst towards butanol oxidation was evaluated via CV, CA, LSV and EIS in an alkaline medium. Results revealed that the proposed catalyst showed greatly enhanced electrooxidation of butanol in terms of high magnificent current density, lower oxidation potential, excellent long-term stability, large surface area, low charge transfer resistance and less toxic ability. Enhanced catalytic performance of the proposed catalyst could be ascribed to the synergistic effect of g–C3N4–ZIF-67 nanocomposite and PtNPs. The PtNPs@g–C3N4–ZIF-67 catalyst holds promising potential applications to be used as an anodic electrocatalyst for the development of high-performance alkaline fuel cells.  相似文献   
17.
In this paper we combine video compression and modern image processing methods. We construct novel iterative filter methods for prediction signals based on Partial Differential Equation (PDE) based methods. The mathematical framework of the employed diffusion filter class is given and some desirable properties are stated. In particular, two types of diffusion filters are constructed: a uniform diffusion filter using a fixed filter mask and a signal adaptive diffusion filter that incorporates the structures of the underlying prediction signal. The latter has the advantage of not attenuating existing edges while the uniform filter is less complex. The filters are embedded into a software based on HEVC with additional QTBT (Quadtree plus Binary Tree) and MTT (Multi-Type-Tree) block structure. In this setting, several measures to reduce the coding complexity of the tool are introduced, discussed and tested thoroughly. The coding complexity is reduced by up to 70% while maintaining over 80% of the gain. Overall, the diffusion filter method achieves average bitrate savings of 2.27% for Random Access having an average encoder runtime complexity of 119% and 117% decoder runtime complexity. For individual test sequences, results of 7.36% for Random Access are accomplished.  相似文献   
18.
The evaluation of cell's weatherability is of practical interest. To further improve the soluble lead flow battery's weatherability, physiochemical properties of electrolytes containing fluoborate, perchlorate, methanesulfonate and trifluoromethanesulfonate are investigated from ?60 to 50 °C. Activities of CF3SO3H and HClO4 are poor in trifluoromethanesulfonate and perchlorate solutions due to common anion effect. The solubility of lead salt can be improved by increasing temperature, but worsened by increasing acid's content. With the temperature increasing, the conductivity is enhanced, and the viscosity is lowered for four solutions. The same results have been found by increasing acid's content except for CF3SO3H. The high energy efficiency can be achieved for cells over ?40–0 °C using fluoborate and perchlorate solutions, 73.2% at ?40 °C and 78.1% at ?30 °C respectively. Over the temperature range of 20–50 °C, the cells with methanesulfonate and trifluoromethanesulfonate solutions have good performance, 77.4% and 73.7% at 50 °C respectively.  相似文献   
19.
This paper presents a stochastic performance modelling approach that can be used to optimise design and operational reliability of complex chemical engineering processes. The framework can be applied to processes comprising multiple units, including the cases where closed form process performance functions are unavailable or difficult to derive from first principles, which is often the case in practice. An interface that facilitates automated two-way communication between Matlab® and process simulation environment is used to generate large process responses. The resulting constrained optimisation problem is solved using both Monte Carlo Simulation (MCS) and First Order Reliability Method (FORM); providing a wide range of stochastic process performance measures. Adding such capabilities to traditional deterministic process simulators provides a more informed basis for selecting optimum design factors; giving a simple way of enhancing overall process reliability and cost-efficiency. Two case study systems are considered to highlight the applicability and benefits of the approach.  相似文献   
20.
2,6-Bis(5-amino-1H-benzimidazol-2-yl)pyridine was prepared and characterized by Fourier transform infrared spectroscopy, elemental analysis, 1H-NMR, and 13C-NMR spectroscopic methods. Then a new poly(benzimidazole-amide) was synthesized by polymerization of the corresponding diamine and isophthalic acid. The obtained poly(benzimidazole-amide) exhibited good yield and high thermal stability. Due to the existence of benzimidazole moieties in polymer’s structure, it has the tendency to form complexes with metal ions. So, a new poly(benzimidazole-amide)/Co nanocomposite was prepared. Morphological studies revealed that metal nanoparticles were dispersed in the polymer matrix without any aggregation. poly(benzimidazole-amide)/Co nanocomposite was used as a catalyst in the oxidation of ethyl benzene to acetophenone with tert-butyl hydroperoxide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号