首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33854篇
  免费   3239篇
  国内免费   1819篇
电工技术   2520篇
综合类   1777篇
化学工业   10279篇
金属工艺   2304篇
机械仪表   763篇
建筑科学   1334篇
矿业工程   894篇
能源动力   3973篇
轻工业   894篇
水利工程   288篇
石油天然气   940篇
武器工业   136篇
无线电   3048篇
一般工业技术   6407篇
冶金工业   1985篇
原子能技术   496篇
自动化技术   874篇
  2024年   106篇
  2023年   707篇
  2022年   1053篇
  2021年   1428篇
  2020年   1286篇
  2019年   1282篇
  2018年   1194篇
  2017年   1329篇
  2016年   1271篇
  2015年   1259篇
  2014年   1769篇
  2013年   1946篇
  2012年   2274篇
  2011年   2866篇
  2010年   2137篇
  2009年   2043篇
  2008年   1827篇
  2007年   1988篇
  2006年   1733篇
  2005年   1427篇
  2004年   1211篇
  2003年   1100篇
  2002年   919篇
  2001年   742篇
  2000年   733篇
  1999年   566篇
  1998年   455篇
  1997年   357篇
  1996年   347篇
  1995年   249篇
  1994年   245篇
  1993年   170篇
  1992年   200篇
  1991年   141篇
  1990年   130篇
  1989年   105篇
  1988年   68篇
  1987年   43篇
  1986年   20篇
  1985年   39篇
  1984年   26篇
  1983年   19篇
  1982年   29篇
  1981年   17篇
  1980年   13篇
  1979年   15篇
  1978年   4篇
  1977年   4篇
  1959年   6篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
51.
The in-situ fabrication of an electron-blocking layer between the Ba-containing anode and the ceria-based electrolyte is an effective approach in suppressing the internal electronic leakage in ceria-based solid oxide fuel cell (SOFC). To improve the thickness of the electron-blocking layer and to research the effect of the layer thickness on the improvement of SOFC, a Ba-containing compound (0.6NiO-0.4BaZr0.1Ce0.7Y0.2O3-δ) modified by Y stabilized zirconia (YSZ) was employed as a composite anode in this research. SEM analyses demonstrated that the thickness of the interlayer can be simply controlled by regulating the proportion of YSZ at anode. The in-situ formed interlayer in the cell with the anode modified by 20?mol% YSZ possesses a thickness of 0.9?µm which is more suitable for the cell achieving an enhanced performance.  相似文献   
52.
Solar thermochemical hydrogen production with energy level upgraded from solar thermal to chemical energy shows great potential. By integrating mid-and-low temperature solar thermochemistry and solid oxide fuel cells, in this paper, a new distributed energy system combining power, cooling, and heating is proposed and analyzed from thermodynamic, energy and exergy viewpoints. Different from the high temperature solar thermochemistry (above 1073.15 K), the mid-and-low temperature solar thermochemistry utilizes concentrated solar thermal (473.15–573.15 K) to drive methanol decomposition reaction, reducing irreversible heat collection loss. The produced hydrogen-rich fuel is converted into power through solid oxide fuel cells and micro gas turbines successively, realizing the cascaded utilization of fuel and solar energy. Numerical simulation is conducted to investigate the system thermodynamic performances under design and off-design conditions. Promising results reveal that solar-to-hydrogen and net solar-to-electricity efficiencies reach 66.26% and 40.93%, respectively. With the solar thermochemical conversion and hydrogen-rich fuel cascade utilization, the system exergy and overall energy efficiencies reach 59.76% and 80.74%, respectively. This research may provide a pathway for efficient hydrogen-rich fuel production and power generation.  相似文献   
53.
The technology for transesterification reactions between methyl esters and alcohols is well established by using classical homogeneous alkaline catalysts, which provide high conversion of methyl esters to specialty or nonindigenous esters. However, in certain products where the purity of the esters is of concern, the removal of homogeneous catalysts after the completion of the reaction is a challenge in terms of production cost and water footprint. Therefore, a study to investigate the potential of heterogeneous catalysts was conducted on reactions between methyl palmitate and triethanolamine. The degree of basicity and active surface area of calcium oxide (CaO), zinc oxide (ZnO), and magnesium oxide (MgO) were first characterized by using temperature-programmed desorption (TPD-CO2) and Brunauere–Emmett–Teller (BET), respectively. Among the metal oxides investigated, the CaO catalyst showed the best catalytic activity toward the transesterification process as it gave the highest conversion of methyl palmitate and yielded fatty esteramine compositions similar to the conventional homogeneous catalyst. The optimum transesterification condition by using the CaO catalyst utilized a lower vacuum system of approximately 200 mbar, which could minimize a considerable amount of energy consumption. Furthermore, low CaO dosage of 0.1% was able to give a conversion of 94.5% methyl ester and formed esteramine at 170 °C for 2 h. Therefore, the production of esterquats from esteramine may become more economically feasible through the methyl ester route by using the CaO catalyst, which can be recycled three times.  相似文献   
54.
55.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
56.
Magnesium (Mg)-based nanocomposites owing to their low density and biocompatibility are being targeted for transportation and biomedical sectors. In order to support a sustainable environment, the prime aim of this study was to develop non-toxic magnesium-based nanocomposites for a wide spectrum of applications. To support this objective, cerium oxide nanoparticles (0.5?vol%, 1?vol%, and 1.5?vol%) reinforced Mg composites are developed in this study using blend-press-sinter powder metallurgy technique. The microstructural studies exhibited limited amounts of porosity in Mg and Mg-CeO2 samples (< 1%). Increasing presence of CeO2 nanoparticles (up to 1.5?vol%) led to a progressive increase in microhardness, dimensional stability, damping capacity and ignition resistance of magnesium. The compressive strengths increased with the increasing addition of the nanoparticles with a significant enhancement in the fracture strain (up to ~48%). Superior energy absorption was observed for all the composite samples prior to compressive fracture. Further, enhancement in thermal, mechanical and damping characteristics of pure Mg is correlated with microstructural changes due to the presence of the CeO2 nanoparticles.  相似文献   
57.
Abstract

Graphene oxide (GO) was functionalized by polyether amine (PEA) via two methods which were one-pot modification in acetone (GON) and two steps with the intermediate product of GOCO-Cl generated (GONS). There were more PEA successfully grafted onto GO for GONS than GON. The onset polymerization temperatures of the benzoxazine (Bz) composites decreased by the inclusion of 1?wt% of GO, GON or GONS. Thermal stability of the polybenzoxazine (PBz) composites was significantly improved indicated from the increase of weight loss temperature. T10, T20 and T50 values of the composites with GONS were higher than that of the others. Toughness of PBzs may be enhanced by the incorporation of nanofillers, and GONS had stronger interfacial interaction with PBz matrix than GON.  相似文献   
58.
We propose the question of the modulated structures of copper oxide is caused by the [CuO2] in-plane oxygen vacancy or apical oxygen vacancy. Sr2CuO3+δ single-crystal samples were prepared using high-temperature and high-pressure methods. The major phase of Sr2CuO3+δ (δ = 0.4) single-crystal system is found to be constituted by the 5 a modulated structure with the Fmmm space group, which originates from the [CuO2] in-plane oxygen vacancy appearing in octahedral Cu-O. Besides, the presence of the [CuO2] in-plane oxygen vacancy may obliterate the superconductivity of the system. Experimental results deduce that the oxygen vacancy may appear in the apical oxygen sites in high-temperature copper oxide superconductors.  相似文献   
59.
Herein, we report the use of tungsten(VI) oxide (WO3) as support for Rh0 nanoparticles. The resulting Rh0/WO3 nanoparticles are highly active and stable catalysts in H2 generation from the hydrolysis of ammonia borane (AB). We present the results of our investigation on the particle size distribution, catalytic activity and stability of Rh0/WO3 catalysts with 0.5%, 1.0%, 2.0% wt. Rh loadings in the hydrolysis reaction. The results reveal that Rh0/WO3 (0.5% wt. Rh) is very promising catalyst providing a turnover frequency of 749 min?1 in releasing 3.0 equivalent H2 per mole of AB from the hydrolysis at 25.0 °C. The high catalytic activity of Rh0/WO3 catalyst is attributed to the reducible nature of support. The report covers the results of kinetics study as well as comparative investigation of activity, recyclability, and reusability of colloidal(0) nanoparticles and Rh0/WO3 (0.5 % wt. Rh) catalyst in the hydrolysis reaction.  相似文献   
60.
In this contribution brownmillerite-based nanocomposite cathode for Single-Chamber Solid Oxide Fuel Cells is developed. These cells can be very attractive especially for small and cheap devices because of the absence of seals. The efficiency of SC-SOFCs is strictly connected to the selectivity of anode and cathode, the bottleneck for this technology. The development of a cathode inert in fuel oxidation is particularly challenging. Our strategy is to start from a catalytically un-active support (CFA = Ca2FeAl0.95Mg0.05O5) and induce the formation of iron oxide based nanoparticles, expected to activate oxygen. Symmetric (CFA + FeOx/CGO/CFA + FeOx) and complete cells (CFA + FeOx/CGO/Ni-CGO) are studied in air and methane/oxygen 2:1 mixture. The Area Specific Resistance of CFA + FeOx is less than 1/3 that of CFA. The high selectivity allows to reach an efficiency of 25%; power still needs to be increased but we demonstrated the possibility to develop selective low cost electrodes. The effect of air, methane/oxygen exposure and the heat treatments were carefully investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号