首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42217篇
  免费   4407篇
  国内免费   1250篇
电工技术   1427篇
综合类   3114篇
化学工业   10114篇
金属工艺   819篇
机械仪表   1708篇
建筑科学   3341篇
矿业工程   366篇
能源动力   395篇
轻工业   7288篇
水利工程   425篇
石油天然气   447篇
武器工业   243篇
无线电   9280篇
一般工业技术   6025篇
冶金工业   379篇
原子能技术   145篇
自动化技术   2358篇
  2024年   188篇
  2023年   681篇
  2022年   963篇
  2021年   1243篇
  2020年   1275篇
  2019年   1096篇
  2018年   1100篇
  2017年   1528篇
  2016年   1472篇
  2015年   1621篇
  2014年   2221篇
  2013年   2398篇
  2012年   2877篇
  2011年   2912篇
  2010年   2272篇
  2009年   2382篇
  2008年   2145篇
  2007年   2898篇
  2006年   2867篇
  2005年   2465篇
  2004年   2002篇
  2003年   1663篇
  2002年   1521篇
  2001年   1258篇
  2000年   1012篇
  1999年   810篇
  1998年   599篇
  1997年   508篇
  1996年   386篇
  1995年   340篇
  1994年   314篇
  1993年   245篇
  1992年   191篇
  1991年   179篇
  1990年   98篇
  1989年   60篇
  1988年   25篇
  1987年   16篇
  1986年   7篇
  1985年   6篇
  1984年   8篇
  1983年   3篇
  1982年   3篇
  1980年   9篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
《Ceramics International》2022,48(24):36238-36248
Cf/SiC composite is an excellent structural and functional material, silicon carbide nanowires (SiCnws) are not only a toughening material but also a great application in the field of microwave absorption. In this study, SiCnws are grown on the surface of carbon fiber (Cf) by polymer impregnation and pyrolysis, and the SiC matrix was prepared by chemical vapor osmosis method. The SiCnws are introduced to enhance the mechanical and microwave absorption properties simultaneously. After 3 impregnations, the flexural strength of the composite was 107.35 ± 10 MPa. When the thickness is 1.86 mm, the minimum reflection loss value is ?41.08 dB, and the effective absorption bandwidth (RL ≤ ?10 dB) is 3.86 GHz. Furthermore, the microwave absorption mechanism of the material is discussed. This work provides a new method to prepare lightweight, stable and high-performance microwave absorption materials, and these materials are expected to be used in high temperature environments.  相似文献   
22.
Recently, ceramic matrix composites reinforced by short carbon fibers (CFs) attracted increasing attentions. To further improve mechanical properties and oxidation resistances, CFs were subjected to oxidation and acidification followed by sol-gel dip-coating to deposit ZrO2 on their surfaces. ZrO2-Cf/SiC composites were fabricated by joint hot compression molding and sintering, compared to Cf/SiC and SiC prepared by the same method. Microstructural analyses indicated that ZrO2 coatings were successfully deposited on CF surfaces, formed strong bonding and interfaces between CF and the matrix. Meanwhile, CFs were found uniformly distributed in SiC matrix with random orientations. Flexural curves of ZrO2-Cf/SiC and Cf/SiC revealed the presence of “false plasticity” regions after sharp drops, which were quite different from brittle flexural behavior of SiC ceramic. Compression strength of the three samples showed step-up growth. ZrO2-Cf/SiC exhibited the highest value, indicating the introduction of CFs and ZrO2 coatings do have great influence on mechanical performances. After heat treatment, ZrO2-Cf/SiC exhibited better oxidation resistance than Cf/SiC, with weight loss ratios estimated to ??3.76% and ??6.43%, respectively. These improved properties indicated that ZrO2-Cf/SiC would be excellent alternatives to other existence materials under ultra-high temperature environments.  相似文献   
23.
Two-dimensional MoS2 nanoparticles (2D-nps) exhibit artificial enzyme properties that can be regulated at bio-nanointerfaces. We discovered that protein lipase is able to tune the peroxidase-like activity of MoS2 2D-nps, offering low-nanomolar, label-free detection and identification in samples with unknown identity. The inhibition of the peroxidase-like activity of the MoS2 2D-nps was demonstrated to be concentration dependent, and as low as 5 nm lipase was detected with this approach. The results were compared with those obtained with several other proteins that did not display any significant interference with the nanozyme behavior of the MoS2 2D-nps. This unique response of lipase was characterized and exploited for the successful identification of lipase in six unknown samples by using qualitative visual inspection and a quantitative statistical analysis method. The developed methodology in this approach is noteworthy for many aspects; MoS2 2D-nps are neither labeled with a signaling moiety nor modified with any ligands for signal readout. Only the intrinsic nanozyme activity of the MoS2 2D-nps is exploited for this detection approach. No analytical equipment is necessary for the visual detection of lipase. The synthesis of the water-soluble MoS2 2D-nps is low costing and can be performed in bulk scale. Exploring the properties of 2D-nps and their interactions with biological materials reveals highly interesting yet instrumental features that offer the development of novel bioanalytical approaches.  相似文献   
24.
One of the biggest challenges of the materials science is the mutual exclusion of strength and toughness. This issue was minimized by mimicking the natural structural materials. To date, few efforts were done regarding materials that should be used in harsh environments. In this work we present novel continuous carbon fiber reinforced ultra-high-temperature ceramic matrix composites (UHTCMCs) for aerospace featuring optimized fiber/matrix interfaces and fibers distribution. The microstructures – produced by electrophoretic deposition of ZrB2 on unidirectional carbon fibers followed by ZrB2 infiltration and hot pressing – show a maximum flexural strength and fracture toughness of 330 MPa and 14 MPa m1/2, respectively. Fracture surfaces are investigated to understand the mechanisms that affect strength and toughness. The EPD technique allows the achievement of a peculiar salami-inspired architecture alternating strong and weak interfaces.  相似文献   
25.
26.
Rapid and sensitive point-of-care testing (POCT) is an extremely critical mission in practical applications, especially for rigorous military medicine, home health care, and in the third world. Here, we report a visual POCT method for adenosine triphosphate (ATP) detection based on Taylor rising in the corner of quadratic geometries between two rod surfaces. We discuss the principle of Taylor rising, demonstrating that it is significantly influenced by contact angle, surface tension, and density of the sample, which are controlled by ATP-dependent rolling circle amplification (RCA). In the presence of ATP, RCA reaction effectively suppresses Taylor-rising behavior, due to the increased contact angle, density, and decreased surface tension. Without addition of ATP, untriggered RCA reaction is favorable for Taylor rising, resulting in a significant height. With this proposed method, visual sensitive detection of ATP without the aid of other instruments is realized with only a 5 μL droplet, which has good selectivity and a low detection limit (17 nM). Importantly, this visual method provides a promising POCT tool for user-friendly molecular diagnostics.  相似文献   
27.
3D laser ultramicroscopy (3D LUM) is intended specially for determining the concentration and size distribution of submicron inclusions in the bulk samples of high-purity materials for visible and IR fiber optics. In this work the 3D LUM technique is shown to be able to identify the nature of individual inclusions detected. The measurement of the light scattered by an inclusion at a varied probe beam wavelength and polarization and at a varied scattered light collection angle makes it possible to determine the inclusion refractive index. The 3D LUM possibilities are illustrated by the example of studying the inclusion nature in the As2S3 glass samples prepared by the direct synthesis from elements in a quartz container at elevated temperatures.  相似文献   
28.
Removal by absorptive ceramic membranes can simultaneously absorb and separate metal ions from water. Alumina/yttria‐stabilized zirconia (Al2O3/YSZ) hollow‐fiber membranes, fabricated using phase inversion and sintering process, were deposited with iron oxide by an in‐situ hydrothermal process. The results showed that α‐Fe2O3 was produced and incorporated across the membranes. A reduction in flux was recorded with the deposition of α‐Fe2O3. However, it improved the adsorption capacity for heavy metal adsorption. The adsorption‐separation test demonstrated that the optimized membrane is able to completely remove Pb(II) ions after two hours.  相似文献   
29.
张旗  刘太奇  张庆成 《材料导报》2018,32(Z1):245-247
近几年,由于节能与环保的需求,电取暖的方式得到大力的推广,电热材料的研究与应用受到人们广泛的重视。非金属碳基电热材料是新型的节能型电热采暖材料,本文重点对影响非金属碳基电热材料中的炭黑基电热材料、碳纤维基电热材料、碳晶电热材料电热性能的因素及相关应用进行了综述。  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号