首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65435篇
  免费   20544篇
  国内免费   810篇
电工技术   3220篇
技术理论   1篇
综合类   1458篇
化学工业   23230篇
金属工艺   828篇
机械仪表   2187篇
建筑科学   3310篇
矿业工程   482篇
能源动力   1994篇
轻工业   7912篇
水利工程   720篇
石油天然气   570篇
武器工业   84篇
无线电   10273篇
一般工业技术   17784篇
冶金工业   1841篇
原子能技术   145篇
自动化技术   10750篇
  2024年   41篇
  2023年   116篇
  2022年   308篇
  2021年   690篇
  2020年   3121篇
  2019年   5760篇
  2018年   5221篇
  2017年   5734篇
  2016年   5652篇
  2015年   5506篇
  2014年   5690篇
  2013年   6071篇
  2012年   5229篇
  2011年   4936篇
  2010年   4047篇
  2009年   3647篇
  2008年   3576篇
  2007年   3425篇
  2006年   3201篇
  2005年   2662篇
  2004年   2407篇
  2003年   2218篇
  2002年   2108篇
  2001年   1796篇
  2000年   1533篇
  1999年   904篇
  1998年   138篇
  1997年   129篇
  1996年   128篇
  1995年   109篇
  1994年   90篇
  1993年   77篇
  1992年   75篇
  1991年   46篇
  1990年   26篇
  1989年   28篇
  1988年   27篇
  1987年   15篇
  1986年   16篇
  1965年   14篇
  1964年   16篇
  1963年   18篇
  1961年   17篇
  1960年   19篇
  1959年   23篇
  1958年   16篇
  1957年   19篇
  1956年   21篇
  1955年   27篇
  1954年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Cancer diagnosis and patient monitoring require sensitive and simultaneous measurement of multiple cancer biomarkers considering that single biomarker analysis present inadequate information on the underlying biological transformations. Thus, development of sensitive and selective assays for multiple biomarker detection might improve clinical diagnosis and expedite the treatment process. Herein, a microfluidic platform for the rapid, sensitive, and parallel detection of multiple cancer‐specific protein biomarkers from complex biological samples is presented. This approach utilizes alternating current electrohydrodynamic‐induced surface shear forces that provide exquisite control over fluid flow thereby enhancing target–sensor interactions and minimizing non‐specific binding. Further, the use of surface‐enhanced Raman scattering‐based spectral encoding with individual barcodes for different targets enables specific and simultaneous detection of captured protein biomarkers. Using this approach, the specific and sensitive detection of clinically relevant biomarkers including human epidermal growth factor receptor 2 (HER2); Mucin 1, cell surface associated (MUC1); epidermal growth factor receptor; and Mucin 16, cell surface associated (MUC16) at concentrations as low as 10 fg mL?1 in patient serum is demonstrated. Successful target detection from patient samples further demonstrates the potential of this current approach for the clinical diagnosis, which envisages a clinical translation for a rapid and sensitive appraisal of clinical samples in cancer diagnostics.  相似文献   
992.
The growth and characterization of an n‐GaP/i‐GaNP/p+‐GaP thin film heterojunction synthesized using a gas‐source molecular beam epitaxy (MBE) method, and its application for efficient solar‐driven water oxidation is reported. The TiO2/Ni passivated n‐GaP/i‐GaNP/p+‐GaP thin film heterojunction provides much higher photoanodic performance in 1 m KOH solution than the TiO2/Ni‐coated n‐GaP substrate, leading to much lower onset potential and much higher photocurrent. There is a significant photoanodic potential shift of 764 mV at a photocurrent of 0.34 mA cm?2, leading to an onset potential of ≈0.4 V versus reversible hydrogen electrode (RHE) at 0.34 mA cm?2 for the heterojunction. The photocurrent at the water oxidation potential (1.23 V vs RHE) is 1.46 and 7.26 mA cm?2 for the coated n‐GaP and n‐GaP/i‐GaNP/p+‐GaP photoanodes, respectively. The passivated heterojunction offers a maximum applied bias photon‐to‐current efficiency (ABPE) of 1.9% while the ABPE of the coated n‐GaP sample is almost zero. Furthermore, the coated n‐GaP/i‐GaNP/p+‐GaP heterojunction photoanode provides a broad absorption spectrum up to ≈620 nm with incident photon‐to‐current efficiencies (IPCEs) of over 40% from ≈400 to ≈560 nm. The high low‐bias performance and broad absorption of the wide‐bandgap GaP/GaNP heterojunctions render them as a promising photoanode material for tandem photoelectrochemical (PEC) cells to carry out overall solar water splitting.  相似文献   
993.
The instability of few‐layer black phosphorus (FL‐BP) hampers its further applications. Here, it can be demonstrated that the instability of FL‐BP can also be the advantage for application in biosensor. First, gold nanoparticle/FL‐BP (BP‐Au) hybrid is facilely synthesized by mixing Au precursor with FL‐BP. BP‐Au shows outstanding catalytic activity (K = 1120 s?1 g?1) and low activation energy (17.53 kJ mol?1) for reducing 4‐nitrophenol, which is attributed to the electron‐reservoir and electron‐donor properties of FL‐BP, and synergistic interaction of Au nanoparticles and FL‐BP. Oxidation of FL‐BP after catalytic reaction is further confirmed by transmission electron microscope, X‐ray photoelectron spectroscopy, and zeta potentials. Second, the catalytic activity of BP‐Au can be reversibly switched from “inactive” to “active” upon treatment with antibody and antigen in solution, thus providing a versatile platform for label‐free colorimetric detection of biomarkers. The sensor shows a wide detection range (1 pg mL?1 to –10 µg mL?1), high sensitivity (0.20 pg mL?1), and selectivity for detecting carcinoembryonic antigen (CEA). Finally, the biosensor has been used to detect CEA in colon and breast cancer clinical samples with satisfactory results. Therefore, the instability of BP can also be the advantage for application in detecting cancer biomarker in clinic.  相似文献   
994.
2D transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their impressively high performance in optoelectronic devices. However, efficient infrared (IR) photodetection has been significantly hampered because the absorption wavelength range of most TMDCs lies in the visible spectrum. In this regard, semiconducting 2D MoTe2 can be an alternative choice owing to its smaller band gap ≈1 eV from bulk to monolayer and high carrier mobility. Here, a MoTe2/graphene heterostructure photodetector is demonstrated for efficient near‐infrared (NIR) light detection. The devices achieve a high responsivity of ≈970.82 A W?1 (at 1064 nm) and broadband photodetection (visible‐1064 nm). Because of the effective photogating effect induced by electrons trapped in the localized states of MoTe2, the devices demonstrate an extremely high photoconductive gain of 4.69 × 108 and detectivity of 1.55 × 1011 cm Hz1/2 W?1. Moreover, flexible devices based on the MoTe2/graphene heterostructure on flexible substrate also retains a good photodetection ability after thousands of times bending test (1.2% tensile strain), with a high responsivity of ≈60 A W?1 at 1064 nm at V DS = 1 V, which provides a promising platform for highly efficient, flexible, and low cost broadband NIR photodetectors.  相似文献   
995.
Uniquely structured CoSe2–carbon nanotube (CNT) composite microspheres with optimized morphology for the hydrogen‐evolution reaction (HER) are prepared by spray pyrolysis and subsequent selenization. The ultrafine CoSe2 nanocrystals uniformly decorate the entire macroporous CNT backbone in CoSe2–CNT composite microspheres. The macroporous CNT backbone strongly improves the electrocatalytic activity of CoSe2 by improving the electrical conductivity and minimizing the growth of CoSe2 nanocrystals during the synthesis process. In addition, the macroporous structure resulting from the CNT backbone improves the electrocatalytic activity of the CoSe2–CNT microspheres by increasing the removal rate of generated H2 and minimizing the polarization of the electrode during HER. The CoSe2–CNT composite microspheres demonstrate excellent catalytic activity for HER in an acidic medium (10 mA cm?2 at an overpotential of ≈174 mV). The bare CoSe2 powders exhibit moderate HER activity, with an overpotential of 226 mV at 10 mA cm?2. The Tafel slopes for the CoSe2–CNT composite and bare CoSe2 powders are 37.8 and 58.9 mV dec?1, respectively. The CoSe2–CNT composite microspheres have a slightly larger Tafel slope than that of commercial carbon‐supported platinum nanoparticles, which is 30.2 mV dec–1.  相似文献   
996.
Rechargeable batteries based on an abundant metal such as aluminum with a three‐electron transfer per atom are promising for large‐scale electrochemical energy storage. Aluminum can be handled in air, thus offering superior safety, easy fabrication, and low cost. However, the development of Al‐ion batteries has been challenging due to the difficulties in identifying suitable cathode materials. This study presents the use of a highly open framework Mo2.5 + y VO9 + z as a cathode for Al‐ion batteries. The open‐tunnel oxide allows a facile diffusion of the guest species and provides sufficient redox centers to help redistribute the charge within the local host lattice during the multivalent‐ion insertion, thus leading to good rate capability with a specific capacity among the highest reported in the literature for Al‐based batteries. This study also presents the use of Mo2.5 + y VO9 + z as a model host to develop a novel ultrafast technique for chemical insertion of Al ions into host structures. The microwave‐assisted method employing diethylene glycol and aluminum diacetate (Al(OH)(C2H3O2)2) can be performed in air in as little as 30 min, which is far superior to the traditional chemical insertion techniques involving moisture‐sensitive organometallic reagents. The Al‐inserted Al x Mo2.5 + y VO9 + z obtained by the microwave‐assisted chemical insertion can be used in Al‐based rechargeable batteries.  相似文献   
997.
A common cause of local tumor recurrence in brain tumor surgery results from incomplete surgical resection. Adjunctive technologies meant to facilitate gross total resection have had limited efficacy to date. Contrast agents used to delineate tumors preoperatively cannot be easily or accurately used in the real‐time operative setting. Although multimodal imaging contrast agents are developed to help the surgeon discern tumor from normal tissue in the operating room, these contrast agents are not readily translatable. This study has developed a novel contrast agent comprised solely of two Food and Drug Administration approved components, indocyanine green (ICG) and superparamagnetic iron oxide (SPIO) nanoparticles—with no additional amphiphiles or carrier materials, to enable preoperative detection by magnetic resonance (MR) imaging and intraoperative photoacoustic (PA) imaging. The encapsulation efficiency of both ICG and SPIO within the formulated clusters is ≈100%, and the total ICG payload is 20–30% of the total weight (ICG + SPIO). The ICG–SPIO clusters are stable in physiologic conditions; can be taken up within tumors by enhanced permeability and retention; and are detectable by MR. In a preclinical surgical resection model in mice, following injection of ICG–SPIO clusters, animals undergoing PA‐guided surgery demonstrate increased progression‐free survival compared to animals undergoing microscopic surgery.  相似文献   
998.
Gold‐coated nanodisk arrays of nearly micron periodicity are reported that have high figure of merit (FOM) and sensitivity necessary for plasmonic refractometric sensing, with the added benefit of suitability for surface‐enhanced Raman scattering (SERS), large‐scale microfabrication using standard photolithographic techniques and a simple instrumental setup. Gold nanodisk arrays are covered with a gold layer to excite the Bragg modes (BM), which are the propagative surface plasmons localized by the diffraction from the disk array. This generates surface‐guided modes, localized as standing waves, leading to highly confined fields confirmed by a mapping of the SERS intensity and numerical simulations with 3D finite element method. The optimal gold‐coated nanodisk arrays are applied for refractometric sensing in transmission spectroscopy with better performance than nanohole arrays and they are integrated to a 96‐well plate reader for detection of IgY proteins in the nanometer range in PBS. The potential for sensing in biofluids is assessed with IgG detection in 1:1 diluted urine. The structure exhibits a high FOM of up to 46, exceeding the FOM of structures supporting surface plasmon polaritons and comparable to more complex nanostructures, demonstrating that subwavelength features are not necessary for high‐performance plasmonic sensing.  相似文献   
999.
A facile vacuum filtration method is applied for the first time to construct sandwich‐structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium‐ion battery exhibits reversible capacities of 1401 mAh g?1 during the 200th cycle at current density of 100 mA g?1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N‐methyl pyrrolidone (NMP).  相似文献   
1000.
In an era of globalized trade relations where food and pharmaceutical products cross borders effortlessly, consumers face counterfeit and deteriorated products at elevated rates. This paper presents multifunctional, biodegradable hydrogel microparticles that can provide information on the authenticity and the potential deterioration of the tagged food or pharmaceutical formulations. These microparticles integrate spatially patterned authenticity code with two sensors—the first one detects possible presence of pathogenic microbes through monitoring pH while the second one identifies products stored above optimal temperatures via optical monitoring of the microparticle degradation. Particles are synthesized from a biocompatible polymer and a photoinitiator, dextran modified with 2‐hydroxyethylmethacrylate and riboflavin, respectively, using a continuous, high throughput method stop‐flow lithography. The proposed synthesis approach also enables crosslinking with visible light bringing about additional flexibility to flow lithography. Model liquid and solid food and pharmaceutical products are successfully labeled with microparticles and the functionality of the sensors in aqueous solutions is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号