首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   18篇
  国内免费   2篇
综合类   4篇
化学工业   142篇
金属工艺   1篇
机械仪表   1篇
建筑科学   4篇
轻工业   63篇
无线电   2篇
一般工业技术   3篇
冶金工业   1篇
自动化技术   1篇
  2023年   3篇
  2022年   17篇
  2021年   31篇
  2020年   11篇
  2019年   7篇
  2018年   7篇
  2017年   7篇
  2016年   12篇
  2015年   9篇
  2014年   17篇
  2013年   8篇
  2012年   10篇
  2011年   13篇
  2010年   13篇
  2009年   8篇
  2008年   7篇
  2007年   11篇
  2006年   9篇
  2005年   7篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
排序方式: 共有222条查询结果,搜索用时 10 毫秒
41.
High cobalt (Co) levels in tumors are associated with good clinical prognosis. An anticancer regimen that increases intratumoral Co through targeted nanomaterial delivery is proposed in this study. Bovine serum albumin and cobalt dichloride are applied to prepare cobaltous oxide nanodots using a facile biomineralization strategy. After iRGD peptide conjugation, the nanodots are loaded into dendritic mesoporous silica nanoparticles, generating a biocompatible product iCoDMSN. This nanocomposite accumulates in tumors after intravenous injection by deep tissue penetration and can be used for photoacoustic imaging. Proteomics research and molecular biology experiments reveal that iCoDMSN is a potent ferroptosis inducer in cancer cells. Mechanistically, iCoDMSNs upregulate heme oxygenase 1 (HMOX1), which increases transferrin receptors and reduces solute carrier family 40 member 1 (SLC40A1), resulting in Fe2+ accumulation and ferroptosis initiation. Furthermore, upregulated nuclear factor erythroid 2-related factor 2 (NRF2), arising from the reduction in Kelch-like ECH-associated protein 1 (KEAP1) expression, is responsible for HMOX1 enhancement after iCoDMSN treatment. Owing to intensified ferroptosis, iCoDMSN acts as an efficient radiotherapy enhancer to eliminate cancer cells in vitro and in vivo. This study demonstrates a versatile Co-based nanomaterial that primes ferroptosis by expanding the labile iron pool in cancer cells, providing a promising tumor radiotherapy sensitizer.  相似文献   
42.
43.
A simple and useful analytical method is proposed for the characterization of blood meal fertilizer, a quality organic fertilizer commonly used in agriculture. Despite the agronomical and commercial importance of this organic fertilizer, Italian law does not indicate an analytical method for its identification in organic matrices. This situation is very unsatisfactory because unscrupulous producers could declare the presence of a quality organic fertilizer, such as blood meal, instead of a poorer fertilizer. In this work the heme group of the hemoglobin contained in blood meal was characterized spectrophotometrically and a calibration curve prepared using different concentrations of hemoglobin was used to determine the hemoglobin content in six blood meal samples. The method was successfully applied for the qualitative identification of hemoglobin in mixtures of organic and/or organic fertilizers with small amounts (3–10%) of blood meal.  相似文献   
44.
Bisphenol A (BPA) is an environmental contaminant widely suspected to be a neurological toxicant. Epidemiological studies have demonstrated close links between BPA exposure, pathogenetic brain degeneration, and altered neurobehaviors, considering BPA a risk factor for cognitive dysfunction. However, the mechanisms of BPA resulting in neurodegeneration remain unclear. Herein, cultured N2a neurons were subjected to BPA treatment, and neurotoxicity was assessed using neuronal viability and differentiation assays. Signaling cascades related to cellular self-degradation were also evaluated. BPA decreased cell viability and axon outgrowth (e.g., by down-regulating MAP2 and GAP43), thus confirming its role as a neurotoxicant. BPA induced neurotoxicity by down-regulating Bcl-2 and initiating apoptosis and autophagy flux inhibition (featured by nuclear translocation of apoptosis-inducing factor (AIF), light chain 3B (LC3B) aggregation, and p62 accumulation). Both heme oxygenase (HO)-1 and AMP-activated protein kinase (AMPK) up-regulated/activated by BPA mediated the molecular signalings involved in apoptosis and autophagy. HO-1 inhibition or AIF silencing effectively reduced BPA-induced neuronal death. Although BPA elicited intracellular oxygen free radical production, ROS scavenger NAC exerted no effect against BPA insults. These results suggest that BPA induces N2a neurotoxicity characterized by AIF-dependent apoptosis and p62-related autophagy defects via HO-1 up-regulation and AMPK activation, thereby resulting in neuronal degeneration.  相似文献   
45.
The heme molecule serves as an essential prosthetic group for oxygen transport and storage proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway, including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and activity, and application of CO donor compounds or gas show potential in inflammatory conditions including sepsis and pulmonary diseases.  相似文献   
46.
47.
CYP101C1 from Novosphingobium aromaticivorans DSM12444 is a homologue of CYP101D1 and CYP101D2 enzymes from the same bacterium and CYP101A1 from Pseudomonas putida. CYP101C1 does not bind camphor but is capable of binding and hydroxylating ionone derivatives including α‐ and β‐ionone and β‐damascone. The activity of CYP101C1 was highest with β‐damascone (kcat=86 s?1) but α‐ionone oxidation was the most regioselective (98 % at C3). The crystal structures of hexane‐2,5‐diol‐ and β‐ionone‐bound CYP101C1 have been solved; both have open conformations and the hexanediol‐bound form has a clear access channel from the heme to the bulk solvent. The entrance of this channel is blocked when β‐ionone binds to the enzyme. The heme moiety of CYP101C1 is in a significantly different environment compared to the other structurally characterised CYP101 enzymes. The likely ferredoxin binding site on the proximal face of CYP101C1 has a different topology but a similar overall positive charge compared to CYP101D1 and CYP101D2, all of which accept electrons from the ArR/Arx class I electron transfer system.  相似文献   
48.
Previous studies by our research group have been concerned with the design of selective inhibitors of heme oxygenases (HO‐1 and HO‐2). The majority of these were based on a four‐carbon linkage of an azole, usually an imidazole, and an aromatic moiety. In the present study, we designed and synthesized a series of inhibition candidates containing a shorter linkage between these groups, specifically, a series of 1‐aryl‐2‐(1H‐imidazol‐1‐yl/1H‐1,2,4‐triazol‐1‐yl)ethanones and their derivatives. As regards HO‐1 inhibition, the aromatic moieties yielding best results were found to be halogen‐substituted residues such as 3‐bromophenyl, 4‐bromophenyl, and 3,4‐dichlorophenyl, or hydrocarbon residues such as 2‐naphthyl, 4‐biphenyl, 4‐benzylphenyl, and 4‐(2‐phenethyl)phenyl. Among the imidazole‐ketones, five ( 36 – 39 , and 44 ) were found to be very potent (IC50<5 μM ) toward both isozymes. Relative to the imidazole‐ketones, the series of corresponding triazole‐ketones showed four compounds ( 54 , 55 , 61 , and 62 ) having a selectivity index >50 in favor of HO‐1. In the case of the azole‐dioxolanes, two of them ( 80 and 85 ), each possessing a 2‐naphthyl moiety, were found to be particularly potent and selective HO‐1 inhibitors. Three non‐carbonyl analogues ( 87 , 89 , and 91 ) of 1‐(4‐chlorophenyl)‐2‐(1H‐imidazol‐1‐yl)ethanone were found to be good inhibitors of HO‐1. For the first time in our studies, two azole‐based inhibitors ( 37 and 39 ) were found to exhibit a modest selectivity index in favor of HO‐2. The present study has revealed additional candidates based on inhibition of heme oxygenases for potentially useful pharmacological and therapeutic applications.  相似文献   
49.
This study aimed to verify whether dimethyl fumarate (DMF) promotes the survival of retinal ganglion cells (RGCs) after optic nerve crush (ONC) accompanied by activation of the NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. We examined changes in the densities of tubulin β3 (TUBB3)-positive RGCs and the amplitudes of the positive scotopic threshold response (pSTR), reflecting the functional activity of RGCs, recorded on an electroretinogram, with daily administration of DMF, on day 7 after ONC. Furthermore, immunohistochemical and immunoblotting analyses were performed to study the activation of the Nrf2/HO-1 pathway using retinas treated with daily administration of DMF. Daily administration of DMF increasedthe density of TUBB3-positive RGCs in a dose-dependent fashion and significantly increased the amplitude of the pSTR. Immunohistochemical analysis showed that DMF administration increased the immunoreactivity for Nrf2 and HO-1, a potent antioxidant enzyme, in RGCs immunolabeled with RNA-binding protein with multiple splicing (RBPMS). Immunoblotting analysis revealed an increase in the nuclear expression of Nrf2 and marked upregulation of HO-1 after DMF administration. These results suggest that DMF has survival-promoting effects in RGC after ONC, possibly via the Nrf2/HO-1 pathway.  相似文献   
50.
The term ferroptosis refers to a peculiar type of programmed cell death (PCD) mainly characterized by extensive iron-dependent lipid peroxidation. Recently, ferroptosis has been suggested as a potential new strategy for the treatment of several cancers, including breast cancer (BC). In particular, among the BC subtypes, triple negative breast cancer (TNBC) is considered the most aggressive, and conventional drugs fail to provide long-term efficacy. In this context, our study’s purpose was to investigate the mechanism of ferroptosis in breast cancer cell lines and reveal the significance of heme oxygenase (HO) modulation in the process, providing new biochemical approaches. HO’s effect on BC was evaluated by MTT tests, gene silencing, Western blot analysis, and measurement of reactive oxygen species (ROS), glutathione (GSH) and lipid hydroperoxide (LOOH) levels. In order to assess HO’s implication, different approaches were exploited, using two distinct HO-1 inducers (hemin and curcumin), a well-known HO inhibitor (SnMP) and a selective HO-2 inhibitor. The data obtained showed HO’s contribution to the onset of ferroptosis; in particular, HO-1 induction seemed to accelerate the process. Moreover, our results suggest a potential role of HO-2 in erastin-induced ferroptosis. In view of the above, HO modulation in ferroptosis can offer a novel approach for breast cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号