首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1758篇
  免费   278篇
  国内免费   49篇
电工技术   36篇
综合类   91篇
化学工业   618篇
金属工艺   83篇
机械仪表   14篇
建筑科学   36篇
矿业工程   60篇
能源动力   73篇
轻工业   12篇
水利工程   17篇
石油天然气   43篇
武器工业   7篇
无线电   310篇
一般工业技术   635篇
冶金工业   39篇
原子能技术   8篇
自动化技术   3篇
  2024年   4篇
  2023年   170篇
  2022年   21篇
  2021年   103篇
  2020年   116篇
  2019年   101篇
  2018年   95篇
  2017年   91篇
  2016年   68篇
  2015年   52篇
  2014年   56篇
  2013年   60篇
  2012年   72篇
  2011年   122篇
  2010年   68篇
  2009年   100篇
  2008年   70篇
  2007年   85篇
  2006年   76篇
  2005年   92篇
  2004年   101篇
  2003年   76篇
  2002年   70篇
  2001年   42篇
  2000年   39篇
  1999年   34篇
  1998年   24篇
  1997年   13篇
  1996年   11篇
  1995年   2篇
  1994年   16篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1978年   1篇
排序方式: 共有2085条查询结果,搜索用时 31 毫秒
31.
具有层状结构的磷酸锆α-Zr(HPO4)2·H2O通过粉末X-射线衍射(XRD),振动光谱(红外IR和拉曼光谱Raman),热分析仪(TG),透射电子显微镜(TEM),扫描电子显微镜(SEM)和BET氮气吸附等手段进行了表征.所制备的α-Zr(HPO4)2·H2O的BET表面积为12.29 m^2/g.研究了α-Zr(HPO4)2·H2O的插入行为,与四甲基溴化铵和十六烷基三甲基溴化铵的插入反应表明插入是完全的,层间距分别增加了0.46 nm和1.68 nm,且插入化合物的荧光性质在室温被检测.  相似文献   
32.
Carboxymethyl konjac glucomannan (CKGM)/ sodium montmorillonite (MMT) hybrid films of various compositions were prepared by casting from a polymer/silicate water suspension. The structure and properties of the hybrid films were investigated by wide angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), attenuated total reflection infrared spectroscopy (ATR‐IR), differential scanning calorimetry (DSC), and tensile tests. The results from WXRD and TEM indicated that an intercalated CKGM/MMT nanocomposite film was obtained by polymer solution intercalation. WXRD and DSC showed that the high‐Tm crystal phase was induced by the presence of lower MMT loading, but the Tm of the hybrid films became weak with the increase of MMT content due to the polymer confinement. The hybrid films showed higher thermal stability and mechanical properties than that of the neat polysaccharide due to the strong interaction between hydroxyl and carbonyl group of CKGM and the silicate layer of MMT. Furthermore, the degree of swelling of the hybrid films was investigated in acidic buffer solutions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2954–2961, 2007  相似文献   
33.
氯化钠对铝硅矿物浮选的影响及其作用机理   总被引:4,自引:0,他引:4  
采用季铵盐DTAL作捕收剂,研究了氯化钠对一水硬铝石和叶蜡石浮选的影响及其作用机理.随着氯化钠浓度的增加,叶蜡石的浮选回收率显著提高,而一水硬铝石的可浮性受其影响很小.机理研究表明:氯化钠对一水硬铝石的zeta-电位没有影响,而能显著降低叶蜡石的zeta-电位,增强捕收剂与叶腊石的静电作用,促进捕收剂的吸附而活化其浮选;叶蜡石表面电位的降低是因为氯离子对叶蜡石存在选择性吸附作用并对其结构进行插层,使得叶蜡石的层间距从0.93 nm增大至1.40 nm.溶液化学计算表明:氯化钠改变溶液的离子强度,显著降低了季铵盐阳离子表面活性剂的临界胶束浓度,使得吸附了捕收剂的矿物表面更容易疏水上浮.  相似文献   
34.
进行瑞雷波相速度反演时,在对其频散曲线的线性化过程中,因误差的引入会导致系数矩阵奇异或近似奇异。为解决此问题,利用奇异值分解算法进行瑞雷波相速度反演,可提高低速软弱夹层的反演精度和可靠性;反演时引入权重矩阵提高了数据分辨率;采用自适应修改阻尼因子以提高迭代效果并协调分辨率与解的关系。实测资料试算结果表明,利用奇异值分解算法对瑞雷波相速度进行反演,不但具有稳定性好、精度高、分辨能力强的特点,而且能自动分层和反演地层参数。  相似文献   
35.
Regarding the complex properties of various cations, the design of aqueous batteries that can simultaneously store multi-ions with high capacity and satisfactory rate performance is a great challenge. Here an amorphization strategy to boost cation-ion storage capacities of anode materials is reported. In monovalent (H+, Li+, K+), divalent (Mg2+, Ca2+, Zn2+) and even trivalent (Al3+) aqueous electrolytes, the capacity of the resulting amorphous MoOx is more than quadruple than that of crystalline MoOx and exceeds those of other reported multiple-ion storage materials. Both experimental and theoretical calculations reveal the generation of ample active sites and isotropic ions in the amorphous phase, which accelerates cation migration within the electrode bulk. Amorphous MoOx can be coupled with multi-ion storage cathodes to realize electrochemical energy storage devices with different carriers, promising high energy and power densities. The power density exceeded 15000 W kg−1, demonstrating the great potential of amorphous MoOx in advanced aqueous batteries.  相似文献   
36.
Considered the promising anode material for next-generation high-energy lithium-ion batteries, SiOx has been slow to commercialize due to its low initial Coulombic efficiency (ICE) and unstable solid electrolyte interface (SEI) layer, which leads to reduced full-cell energy density, short cycling lives, and poor rate performance. Herein, a novel strategy is proposed to in situ construct an artificial hybrid SEI layer consisting of LiF and Li3Sb on a prelithiated SiOx anode via spontaneous chemical reaction with SbF3. In addition to the increasing ICE (94.5%), the preformed artificial SEI layer with long-term cycle stability and enhanced Li+ transport capability enables a remarkable improvement in capacity retention and rate capability for modified SiOx. Furthermore, the full cell using Li(Ni0.8Co0.1Mn0.1)O2 and a pre-treated anode exhibits high ICE (86.0%) and capacity retention (86.6%) after 100 cycles at 0.5 C. This study provides a fresh insight into how to obtain stable interface on a prelithiated SiOx anode for high energy and long lifespan lithium-ion batteries.  相似文献   
37.
Phosphorus exhibits high capacity and low redox potential, making it a promising anode material for future sodium-ion batteries. However, its practical applications are confined by poor durability and sluggish kinetics. Herein, an innovative in-situ electrochemically self-driven strategy is presented to embed phosphorus nanocrystal (≈10 nm) into a Fe-N-C-rich 3D carbon framework (P/Fe-N-C). This strategy enables rapid and high-capacity sodium ion storage. Through a combination of experimental assistance and theoretical calculations, a novel synergistic catalytic mechanism of Fe-N-C is reasonably proposed. In detail, the electrochemical formation of Fe-N-C catalytic sites facilitates the release of fluorine in ester-based electrolyte, inducing Na+-conducting-enhanced solid-electrolyte interphase. Furthermore, it also effectively induces the dissociation energy of the P-P bond and promotes the reaction kinetics of P anode. As a result, the unconventional P/Fe-N-C anode demonstrates outstanding rate-capability (267 mAh g−1 at 100 A g−1) and cycling stability (72%, 10 000 cycles). Notably, the assembled pouch cell achieves high-energy density of 220 Wh kg−1.  相似文献   
38.
For the development of all-solid-state lithium metal batteries (LMBs), a high-porous silica aerogel (SA)-reinforced single-Li+ conducting nanocomposite polymer electrolyte (NPE) is prepared via two-step selective functionalization. The mesoporous SA is introduced as a mechanical framework for NPE as well as a channel for fast lithium cation migration. Two types of monomers containing weak-binding imide anions and Li+ cations are synthesized and used to prepare NPEs, where these monomers are grafted in SA to produce SA-based NPEs (SANPEs) as ionomer-in-framework. This hybrid SANPE exhibits high ionic conductivities (≈10−3 S cm−1), high modulus (≈105 Pa), high lithium transference number (0.84), and wide electrochemical window (>4.8 V). The resultant SANPE in the lithium symmetric cell possesses long-term cyclic stability without short-circuiting over 800 h under 0.2 mA cm−2. Furthermore, the LiFePO4|SANPE|Li solid-state batteries present a high discharge capacity of 167 mAh g−1 at 0.1 C, good rate capability up to 1 C, wide operating temperatures (from −10 to 40 °C), and a stable cycling performance with 97% capacity retention and 100% coulombic efficiency after 75 cycles at 1 C and 25 °C. The SANPE demonstrates a new design principle for solid-state electrolytes, allowing for a perfect complex between inorganic silica and organic polymer, for high-energy-density LMBs.  相似文献   
39.
Rechargeable aqueous zinc batteries are promising energy storage devices because of their low cost, high safety, and high energy density. However, their performance is plagued by the unsatisfied cyclability due to the dendrite growth and hydrogen evolution reaction (HER) at the Zn anode. Herein, it is demonstrated that the concentrated hybrid aqueous/non-aqueous ZnCl2 electrolytes constitute a peculiar chemical environment for not only the Zn-ions but also water molecules. The high concentration of chloride ions substitutes the H2O molecular in the solvation structure of Zn2+, while the acetonitrile further interacts with H2O to decrease its activity. The hybrid electrolytes both inhibit the dendrite formation and HER, enabling an ultrahigh average Coulombic efficiency of 99.9% in the Zn||Cu half-cell and a highly reversible Zn plating/stripping with a low overpotential of 21 mV. Using this hybrid electrolyte, the Zn||polytriphenylamine (PTPAn) full cell deliveres a high discharge capacity of 110 mAh g−1, a high power density of 9200 W kg−1 at 100 °C and maintains 85% of the capacity for over 6000 cycles at 10 °C. This study provides a deep understanding between the solvation structure and columbic efficiency of Zn anode, thus inspiring the development for stable Zn batteries.  相似文献   
40.
Solid-state lithium metal batteries (SSLMBs) are a promising candidate for next-generation energy storage systems due to their intrinsic safety and high energy density. However, they still suffer from poor interfacial stability, which can incur high interfacial resistance and insufficient cycle lifespan. Herein, a novel poly(vinylidene fluoride‑hexafuoropropylene)-based polymer electrolyte (PPE) with LiBF4 and propylene carbonate plasticizer is developed, which has a high room-temperature ionic conductivity up to 1.15 × 10−3 S cm−1 and excellent interfacial stability. Benefitting from the stable interphase, the PPE-based symmetric cell can operate for over 1000 h. By virtue of cryogenic transmission electron microscopy (Cryo-TEM) characterization, the high interfacial compatibility between Li metal anode and PPE is revealed. The solid electrolyte interphase is made up of an amorphous outer layer that can keep intimate contact with PPE and an inner Li2O-dominated layer that can protect Li from continuous side reactions during battery cycling. A LiF-rich transition layer is also discovered in the region of PPE close to Li metal anode. The feasibility of investigating interphases in polymer-based solid-state batteries via Cryo-TEM techniques is demonstrated, which can be widely employed in future to rationalize the correlation between solid-state electrolytes and battery performance from ultrafine interfacial structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号