首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12249篇
  免费   1620篇
  国内免费   955篇
电工技术   397篇
综合类   816篇
化学工业   5110篇
金属工艺   903篇
机械仪表   1019篇
建筑科学   123篇
矿业工程   118篇
能源动力   115篇
轻工业   74篇
水利工程   6篇
石油天然气   43篇
武器工业   123篇
无线电   2498篇
一般工业技术   2713篇
冶金工业   292篇
原子能技术   25篇
自动化技术   449篇
  2024年   51篇
  2023年   524篇
  2022年   569篇
  2021年   526篇
  2020年   586篇
  2019年   501篇
  2018年   520篇
  2017年   577篇
  2016年   451篇
  2015年   393篇
  2014年   504篇
  2013年   526篇
  2012年   614篇
  2011年   810篇
  2010年   498篇
  2009年   647篇
  2008年   596篇
  2007年   817篇
  2006年   728篇
  2005年   665篇
  2004年   569篇
  2003年   481篇
  2002年   398篇
  2001年   342篇
  2000年   321篇
  1999年   284篇
  1998年   241篇
  1997年   210篇
  1996年   169篇
  1995年   153篇
  1994年   113篇
  1993年   99篇
  1992年   89篇
  1991年   71篇
  1990年   54篇
  1989年   55篇
  1988年   30篇
  1987年   11篇
  1986年   9篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
《Ceramics International》2022,48(15):21600-21609
Stereolithography (SL) shows advantages for preparing alumina-based ceramics with complex structures. The effects of the particle size distribution, which strongly influence the sintering properties in ceramic SL, have not been systematically explored until now. Herein, the influence of the particle size distribution on SL-manufactured alumina ceramics was investigated, including bending strength at room temperature, post-sintering shrinkage, porosity, and microstructural morphology. Seven particle size distributions of alumina ceramics were studied (in μm/μm: 30/5, 20/3, 10/2, 5/2, 5/0.8, 3/0.5, and 2/0.3); a coarse:fine particle ratio of 6:4 was maintained. At the same sintering temperature, the degree of sintering was greater for finer particle sizes. The particle size distribution had a larger influence on flexural strength, porosity and shrinkage than sintering temperature when the particle size distribution difference reached 10-fold but was weaker for 10 μm/2 μm, 5 μm/2 μm and 5 μm/0.8 μm. The sintering shrinkage characteristics of cuboid samples with different particle sizes were studied. The use of coarse particles influenced the accuracy of small-scale samples. When the particle size was comparable to the sample width, such as 30 μm/5 μm and 5 mm, the width shrinkage was consistent with the height shrinkage. When the particle size was much smaller than the sample width, such as 2 μm/0.3 μm and 5 mm, the width shrinkage was consistent with the length shrinkage. The results of this study provide meaningful guidance for future research on applications of SL and precise control of alumina ceramics through particle gradation.  相似文献   
12.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
13.
In this paper we report on the preparation and laser performance of transparent 3at.% Yb:Sc2O3 ceramics by reactive sintering of commercially available powders under vacuum followed by hot isostatic pressing (HIP). Combinations of different vacuum sintering temperatures (1650 °C and 1750 °C) and different HIP treatments (1700 °C and 1800 °C at 200 MPa) were tested in order to understand how these steps influence the microstructure and thus the optical and lasing properties of the ceramic samples. All the samples showed a good optical quality. The microstructure analysis and the laser tests showed that the vacuum pre-sintering temperature is the key factor determining the quality of the samples and the laser performances. The best values of slope efficiency i.e. ηL = 50 % and output power i.e. Pout = 6.62 W were obtained for the sample pre-sintered under vacuum at 1650 °C and hot isostatically pressed at 1800 °C.  相似文献   
14.
《Ceramics International》2020,46(3):3190-3202
In this study, nuclear shielding qualities of glass-ceramics with chemical composition Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 containing different amount of BaO and PbO were investigated. The μρ values were simulated using GEANT4 toolkit at 0.015–20 MeV wide energy range and the obtained results were verified by theoretical WinXCOM results. The variables such as μρ, HVL, MFP, Zeff, Neff, EBF and EABF were computed to determine the gamma-ray shielding performances of studied glass ceramics. The results revealed that increase in PBO and BaO percentages in glass samples has caused to decrease the HVL, MFP, EBF and EABF values and increase μρ, Zeff values. It has been seen that N28 and S24 samples own superior protection ability against gamma radiation. In addition, the shielding capacity of these glass ceramics against charged and uncharged particles were predicted by determination of MSP and PR values for alpha, proton and ΣR values for neutrons. It has been concluded that PbO and BaO addition improve radiation shielding competences of glass ceramics. The data obtained from this study will be beneficial for designing glass ceramics shields for radiation protection enforcements.  相似文献   
15.
Dy3+, Eu3+: NaLa(WO4)2 phosphors are successfully synthesized through the solid-state reaction technique. The phase-structure and morphology are measured via X-ray diffraction and energy dispersive spectrometry. The concentrations of Dy3+, Eu3+, La3+, and W6+ are measured via ICP. The absorption and excited spectra are presented, which indicate that a blue band ranging from 430 to 480 nm is suitable for excitation. Using a commercial blue LED with a wavelength of 450 nm as the excitation light source, emission spectra for samples with varying dopant concentration ratios of Dy3+ to Eu3+ are obtained, which show good tunable yellow and red emission. For the purpose of investigating white LED performance, CIE spectra and a white light photo are also presented. The results reveal that varying the dopant concentration ratio of Dy3+ to Eu3+ plays a key role in the warm-white performance. With increasing concentration of Eu3+, the correlated color temperature decreases from 4069 to 3172 K, which indicates good warm-white performance.  相似文献   
16.
Abstract

Ba0.95Ca0.05Ti1-xZrxO3 (BCTZO) ceramics were prepared by a solid state reaction method. The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray absorption near edge structure (XANES). The ceramics exhibit a pure perovskite structure. The average grain size gradually decreases with increasing Zr concentration. XANES results indicate that the intensities of pre-edge peaks dropped with increasing Zr concentration. The BCTZO ceramic of x?=?0.05 has the optimum electrical properties with the maximum dielectric constant (ε'm), remanent polarization (2Pr), coercive electric field (2Ec) and piezoelectric charge constant (d33) of 7,244, 12.54 (μC/cm2), 5.29 (kV/cm) and 288 (pC/N), respectively.  相似文献   
17.
《Ceramics International》2019,45(14):16940-16947
Coordination chemistry, bond state and vibrational spectrum of co-substituted microwave dielectric NdNb1-x(Zr0.5W0.5)xO4 ceramics (x = 0.01∼0.05) were investigated. Raman spectra and XRD refinement showed a solid solution was formed. The compressed and elongated chemical bonds are responsible for the variations of crystal parameters and cell volume. Calculated chemical bond parameters indicated bond covalency, lattice energy and Nb-site bond energy act on the fluctuations of the permittivity, quality factor and temperature coefficient, respectively. Meanwhile, the infrared vibrational spectrum is fitted to quantify the contributions of observed IR mode to the intrinsic loss. Compact ceramic possesses excellent properties: εr ∼ 19.2, Q × f ∼ 55282 GHz and τf ∼ -11.36 ppm/°C with x = 0.04, at 1250°C.  相似文献   
18.
《Ceramics International》2022,48(9):12790-12799
The ablation behavior of high-entropy ceramics (HECs) was investigated in this study using an oxyacetylene flame at 2000 °C. Spark plasma sintering was used to construct a dense HEC (TiZrHfNbTa)C with a 20 vol% of SiC addition (HEC-20SiC). The densification of HEC-20SiC can be improved to a certain extent by adding SiC particles, increasing the hardness of HEC-20SiC to up to 24.6 GPa, and the crack deflection observed through the addition of SiC particles were considered to be the strengthening and toughening mechanisms. After ablation, Hf6Ta2O17, Ti5.1Ta4.9O20, Nb2Zr6O17, TaZr2.75O8, and SiO2 can be detected on an ablated surface and HEC-20SiC possesses the minimum mass ablation rate (?1.9 mg s?1) and line ablation rate (2.1 μm s?1) among the comparative ceramics. On the one hand, the SiC phase forms gaseous CO, CO2, and SiO as well as viscous SiO2 during ablation and some part of the heat can be dissipated by the evaporation of gaseous CO, CO2, and SiO; further, pore defects can be healed by viscous SiO2, thus inhibiting the diffusion of reactive oxygen species. On the other hand, the HEC phase with a lattice-distortion caused by single-phase solid-solution can effectively inhibit the invasion of reactive oxygen species and the outward migration of metal atoms. The invasion rate of reactive oxygen is considered to be the main step during HEC-20SiC ablation, and it is believed that higher principal component HECs can improve ablation performance even further.  相似文献   
19.
《Ceramics International》2022,48(8):10885-10894
Lead-free bismuth sodium titanate-strontium titanate (NBT-ST) dielectric ceramic materials have been extensively investigated energy storage materials because of their relaxor characteristics. In this study, four different lanthanide elements were introduced into the ferroelectric NBT-ST ceramic to improve their relaxor properties. The introduction of the lanthanide resulted in an increase in disorder at location A within the perovskite lattice and improved relaxor characteristics, leading to a stored energy density of more than 3.5 J/cm3. In particular, an ultrahigh recoverable stored energy density of 4.94 J/cm3 and efficiency of 88.45% were achieved at 440 kV/cm when the NBT-ST ceramic was modified with neodymium. The modified ceramic also exhibited good thermal stability in the range of 30–120 °C, as well as a fast discharge time of ~153 ns, indicating that Nd-incorporated NBT-ST is a promising candidate for electrical energy storage ceramic.  相似文献   
20.
0.5 at.% Cr:ZnGa2O4 precursor was synthesized by the co-precipitation method with nitrates as raw materials, using ammonium carbonate as the precipitant. Low-agglomerated Cr:ZnGa2O4 powders with an average particle size of 43 nm were obtained by calcining the precursor at 900℃ for 4 h. Using the powders as starting materials, 0.5 at.% Cr:ZnGa2O4 ceramics with an average grain size of about 515 nm were prepared by presintering at 1150℃ for 5 h in air and HIP post-treatment at 1100℃ for 3 h under 200 MPa Ar. The in-line transmittance of 0.5 at.% Cr:ZnGa2O4 ceramics with a thickness of 1.3 mm reaches 59.5% at the wavelength of 700 nm. The Cr:ZnGa2O4 ceramics can be effectively excited by visible light and produce persistent luminescence at 700 nm. For Cr:ZnGa2O4 transparent ceramics, the brightness of afterglow was larger than 0.32 mcd/m2 after 30 min, which is far superior to that of Cr:ZnGa2O4 persistent luminescence powders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号