首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55550篇
  免费   4701篇
  国内免费   3644篇
电工技术   4913篇
综合类   3742篇
化学工业   9357篇
金属工艺   6347篇
机械仪表   3999篇
建筑科学   1058篇
矿业工程   2553篇
能源动力   1819篇
轻工业   2783篇
水利工程   272篇
石油天然气   1637篇
武器工业   410篇
无线电   7232篇
一般工业技术   12301篇
冶金工业   2550篇
原子能技术   844篇
自动化技术   2078篇
  2024年   208篇
  2023年   815篇
  2022年   1252篇
  2021年   1545篇
  2020年   1575篇
  2019年   1349篇
  2018年   1391篇
  2017年   1874篇
  2016年   1916篇
  2015年   1949篇
  2014年   2697篇
  2013年   3189篇
  2012年   3596篇
  2011年   4281篇
  2010年   3024篇
  2009年   3264篇
  2008年   2994篇
  2007年   3737篇
  2006年   3495篇
  2005年   2962篇
  2004年   2574篇
  2003年   2277篇
  2002年   1908篇
  2001年   1657篇
  2000年   1492篇
  1999年   1181篇
  1998年   1021篇
  1997年   888篇
  1996年   717篇
  1995年   638篇
  1994年   563篇
  1993年   453篇
  1992年   336篇
  1991年   238篇
  1990年   174篇
  1989年   172篇
  1988年   107篇
  1987年   72篇
  1986年   45篇
  1985年   44篇
  1984年   52篇
  1983年   33篇
  1982年   50篇
  1981年   15篇
  1980年   9篇
  1979年   14篇
  1976年   7篇
  1975年   6篇
  1974年   10篇
  1959年   8篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
31.
We study magnetic-field directed self-assembly of magnetic nanoparticles onto templates recorded on perpendicular magnetic recording media, and quantify feature width and height as a function of assembly time. Feature widths are determined from Scanning Electron Microscope (SEM) images, while heights are obtained with Atomic Force Microscopy (AFM). For short assembly times, widths were ~150 nm, while heights were ~14 nm, a single nanoparticle on average with a 10:1 aspect ratio. For long assembly times, widths approach 550 nm, while the average height grows to 3 nanoparticles, ~35 nm; a 16:1 aspect ratio. We perform magnetometry on these self-assembled structures and observe the slope of the magnetic moment vs. field curve increases with time. This increase suggests magnetic nanoparticle interactions evolve from nanoparticle–nanoparticle interactions to cluster–cluster interactions as opposed to feature–feature interactions. We suggest the aspect ratio increase occurs because the magnetic field gradients are strongest near the transitions between recorded regions in perpendicular media. If these gradients can be optimized for assembly, strong potential exists for using perpendicular recording templates to assemble complex heterogeneous materials.  相似文献   
32.
33.
《Ceramics International》2019,45(13):16405-16410
Copper Indium Gallium Selenide (Cu(In,Ga)Se2, CIGSe) absorbers with different Ga contents were prepared by sputtering CIGSe ceramic targets and post-annealing. CIGSe solar cell devices were fabricated with other functional layers. The device performances and absorber properties were investigated. Increasing Ga content led to an increase in VOC and a decrease in JSC. Ga was supposed to diffuse towards back contact during the annealing process. The best performance was obtained as the ratio of Ga/(In + Ga) reaches 0.32 with the efficiency of 13.8% and a VOC of 537 mV.  相似文献   
34.
Magnetic nanoparticles have been employed to capture pathogens for many biological applications; however, optimal particle sizes have been determined empirically in specific capturing protocols. Here, a theoretical model that simulates capture of bacteria is described and used to calculate bacterial collision frequencies and magnetophoretic properties for a range of particle sizes. The model predicts that particles with a diameter of 460 nm should produce optimal separation of bacteria in buffer flowing at 1 L h−1. Validating the predictive power of the model, Staphylococcus aureus is separated from buffer and blood flowing through magnetic capture devices using six different sizes of magnetic particles. Experimental magnetic separation in buffer conditions confirms that particles with a diameter closest to the predicted optimal particle size provide the most effective capture. Modeling the capturing process in plasma and blood by introducing empirical constants (ce), which integrate the interfering effects of biological components on the binding kinetics of magnetic beads to bacteria, smaller beads with 50 nm diameters are predicted that exhibit maximum magnetic separation of bacteria from blood and experimentally validated this trend. The predictive power of the model suggests its utility for the future design of magnetic separation for diagnostic and therapeutic applications.  相似文献   
35.
From the perspectives of scientific researches and practical applications, it is desirable to explore high operating temperature ferromagnetic films. The effect of biaxial strain on magnetic properties of (110)-oriented La0.7Sr0.3MnO3 films was studied. High quality La0.7Sr0.3MnO3 films were grown on (110)-oriented perovskite single crystal substrates using pulsed laser deposition, varying substrate-induced misfit strains from ??2.27–0.75%. A remarkable enhancement of Curie temperature has been achieved for (110)-oriented La0.7Sr0.3MnO3 films clamped with small misfit strains (i.e., grown on LAST (110)). The enhanced Curie temperature of (110)-oriented La0.7Sr0.3MnO3 films could be attributed to the misfit strain between the films and the underlying substrates and may have technological implication for applications at high temperature environments.  相似文献   
36.
37.
In this work, we focus on the Ge nanoparticles (Ge-np) embedded ZnO multilayered thin films. Effects of reactive and nonreactive growth of ZnO layers on the rapid thermal annealing (RTA) induced formation of Ge-np have been specifically investigated. The samples were deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively on Si substrates. As-prepared thin film samples have been exposed to an ex-situ RTA at 600 °C for 60 s under forming gas atmosphere. Structural characterizations have been performed by X-ray Diffraction (XRD), Raman scattering, Secondary Ion Mass Spectroscopy (SIMS), and Scanning Electron Microscopy (SEM) techniques. It has been realized that reactive or nonreactive growth of ZnO layers significantly influences the morphology of the ZnO: Ge samples, most prominently the crystal structure of Ge-np. XRD and Raman analysis have revealed that while reactive growth results in a mixture of diamond cubic (DC) and simple tetragonal (ST12) Ge-np, nonreactive growth leads to the formation of only DC Ge-np upon RTA process. Formation of ST12 Ge-np has been discussed based on structural differences due to reactive and nonreactive growth of ZnO embedding layer.  相似文献   
38.
39.
Vitrified bond CBN grinding wheels are being widely used due to their superior performance. Also, advantages of vitrified grinding wheels are high elastic modulus, stable chemical property, and low thermal expansion coefficient. Brittleness and low strength are key factors restricting the development of vitrified bond CBN grinding wheels. In this paper, the sintering in a high magnetic field was innovatively introduced into the manufacturing of vitrified bond CBN grinding wheels, and the effects of sintering in a high magnetic field on properties on vitrified bond and vitrified CBN composites were systematically investigated. Vitrified bond was characterized using three-point bending, scanning electron microscopy, X-ray diffraction. It was observed that microstructure of vitrified bond could be changed, grain orientation could be controlled and average grain size could be decreased in a high magnetic field, while vitrified bond strength could be simultaneously improved. High quality vitrified bond could be obtained by appropriately adjusting the strength and direction of high magnetic field. Results demonstrated that vitrified bond properties were improved when the magnetic field strength was 6?T. In order to highlight the high magnetic field effect on the vitrified CBN composites, the ordinary CBN abrasives and nickel plated CBN abrasives were used respectively. Microstructures, bending strengths of vitrified CBN composites were compared in different high magnetic fields. When the magnetic field strength was appropriate (less than 6?T), the binding characteristic of vitrified bond CBN composites with nickel plated CBN abrasives was greatly improved. The highest bending strength value of vitrified CBN composites was 79.5?MPa in 6?T high magnetic field.  相似文献   
40.
Thermal sprayed ceramic coatings have extensively been used in components to protect them against friction and wear. However, the poor lubricating ability severely limits their application. Herein, yttria-stabilized zirconia (YSZ)/MoS2 composite coatings were successfully fabricated on steel substrate with the combination of thermal spraying technology and hydrothermal reaction. Results show that the synthetic MoS2 powders are composed of numbers of ultra-thin sheets (about 7 ~ 8?nm), and the sheet has obvious lamellar structure. After vacuum impregnation and hydrothermal reaction, numbers of MoS2 powders, look like flowers, generate inside the plasma sprayed YSZ coating. Moreover, the growing point of the MoS2 flower is the intrinsic micro-pores of YSZ coating. The friction and wear tests under high vacuum environment indicate that the composite coating has an extremely long lifetime (>?100,000 cycles) and possesses a low friction coefficient less than 0.1, which is lower by about 0.15 times than that of YSZ coating. Meanwhile, the composite shows an extremely low wear rate (2.30?×?10?7 mm3 N?1 m?1) and causes slight wear damage to the counterpart. The excellent lubricant and wear-resistant ability are attributed to the formation of MoS2 transfer films and the ultra-smooth of the worn surfaces of hybrid coatings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号