首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91949篇
  免费   10814篇
  国内免费   6469篇
电工技术   10250篇
技术理论   3篇
综合类   8438篇
化学工业   11342篇
金属工艺   3968篇
机械仪表   10207篇
建筑科学   5046篇
矿业工程   2769篇
能源动力   6173篇
轻工业   2434篇
水利工程   5890篇
石油天然气   5195篇
武器工业   1302篇
无线电   8319篇
一般工业技术   9716篇
冶金工业   4240篇
原子能技术   2216篇
自动化技术   11724篇
  2024年   339篇
  2023年   1244篇
  2022年   2236篇
  2021年   2733篇
  2020年   2932篇
  2019年   2428篇
  2018年   2361篇
  2017年   3260篇
  2016年   3683篇
  2015年   3889篇
  2014年   5491篇
  2013年   5721篇
  2012年   6370篇
  2011年   7062篇
  2010年   4988篇
  2009年   5323篇
  2008年   5243篇
  2007年   6212篇
  2006年   5782篇
  2005年   4978篇
  2004年   4246篇
  2003年   3786篇
  2002年   3052篇
  2001年   2642篇
  2000年   2243篇
  1999年   1860篇
  1998年   1520篇
  1997年   1444篇
  1996年   1196篇
  1995年   987篇
  1994年   877篇
  1993年   667篇
  1992年   546篇
  1991年   350篇
  1990年   348篇
  1989年   248篇
  1988年   197篇
  1987年   150篇
  1986年   101篇
  1985年   68篇
  1984年   90篇
  1983年   57篇
  1982年   48篇
  1981年   26篇
  1980年   16篇
  1979年   23篇
  1977年   16篇
  1976年   9篇
  1959年   30篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
31.
Very high resolution inverse synthetic aperture radar (ISAR) imaging of fast rotating targets is a complicated task. There may be insufficient pulses or may introduce migration through range cells (MTRC) during the coherent processing interval (CPI) when we use the conventional range Doppler (RD) ISAR technique. With compressed sensing (CS) technique, we can achieve the high-resolution ISAR imaging of a target with limited number of pulses. Sparse representation based method can achieve the super resolution ISAR imaging of a target with a short CPI, during which the target rotates only a small angle and the range migration of the scatterers is small. However, traditional CS-based ISAR imaging method generally faced with the problem of basis mismatch, which may degrade the ISAR image. To achieve the high resolution ISAR imaging of fast rotating targets, this paper proposed a pattern-coupled sparse Bayesian learning method for multiple measurement vectors, i.e. the PC-MSBL algorithm. A multi-channel pattern-coupled hierarchical Gaussian prior is proposed to model the pattern dependencies among neighboring range cells and correct the MTRC problem. The expectation-maximization (EM) algorithm is used to infer the maximum a posterior (MAP) estimate of the hyperparameters. Simulation results validate the effectiveness and superiority of the proposed algorithm.  相似文献   
32.
Cystoseira hakodatensis is an unutilised brown algae belonging to family Sargassaceae. A crude methanol extract from the algae showed inhibitory effects on the growths of Bacillus cereus and Bacillus licheniformis. To isolate the major antimicrobial agent, a sequential active‐guided isolation procedure was applied: liquid–liquid extraction, column chromatography and bio‐autography. A marked antimicrobial agent (active α) was isolated in hydrophobic fraction and was determined to phenolics without carbohydrates and proteins by phytochemical test. Regarding the antimicrobial potential, the isolated active α showed better inhibitory effects against B. cereus and B. licheniformis at 2 and 4 times of lower concentrations (62.5 and 31.3 μg mL?1) in comparison with epigallocatechin gallate. These results showed that C. hakodatensis is a potential source of antimicrobial agent capable of preventing the growth of the two bacteria.  相似文献   
33.
Self-adaptive surface measurements that can reduce data redundancy and improve time efficiency are in high demand in many fields of science and technology. For this purpose, a system implemented with Gaussian process (GP) adaptive sampling is developed. The non-parametric GP model is applied to reconstruct the topography and guide the subsequent sampling position, which is determined from the inference uncertainty estimation. A criterion is proposed to terminate the GP adaptive measurement automatically without any prior model or data of the topography. Experiments on typical surfaces validate the intelligence, adaptability, and high accuracy of the GP method along with the stabilization of the automatic iteration termination. Compared with traditional raster sampling, data redundancy is reduced and the time efficiency is improved without sacrificing the surface reconstruction accuracy. The proposed method can be implemented in other systems with similar measurement principles, thus benefitting surface characterizations.  相似文献   
34.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
35.
As a highly complex and time-varying process, gas-water two-phase flow is commonly encountered in industries. It has a variety of typical flow states and transition flow states. Accurate identification and monitoring of flow states is not only beneficial to further study of two-phase flow but also helpful for stable operation and economic efficiency of process industry. Combining canonical variate analysis (CVA) and Gaussian mixture model (GMM), a strategy called multi-CVA-GMM is proposed for flow state monitoring in gas-water two-phase flow. CVA is used to extract flow state features from the perspective of correlation between historical data and future data, which solves the cross correlation and temporal correlation of multi-sensor measurement data. GMM calculates the possibility that the current flow state belongs to each typical flow pattern and judges the current flow state by probability indicators. It is conducive to follow-up use of Bayesian inference probability and Mahalanobis distance-based (BID) indicator for flow state monitoring, which avoids repeated traversal of multiple CVA-GMM models and improves the efficiency of the monitoring process. The probability indicators can also be used to analyze transition flow states. The method combining the probabilistic idea of GMM with the deterministic idea of multimodal modeling can accurately identify the current flow state and effectively monitor the evolution of flow state. The multi-CVA-GMM method is validated by using the measured data of the horizontal flow loop of gas-water two-phase flow experimental facility, and its effectiveness is proved.  相似文献   
36.
This paper discusses the capability of Guo et al.'s (2021) equations to determine the discharge of radial gates under submerged flow conditions. It was concluded that Guo et al.'s (2021) equations are associated with error reduction compared to the Incomplete Self-Similarity (ISS) theory and the calibration method. However, it does not have a significant advantage over Energy-Momentum (E-M) approach. Employing E-M principles, new equations were proposed to determine the discharge of radial gates, which has some advantages compared to Guo et al. (2021), such as (1) error reduction under partially and fully submerged flow conditions, (2) least dependence on the empirical constants, (3) uniformity of form over the entire submerged condition, and (4) no need to classify the submerged flow. Field calibration showed that the proposed equations in the present study for a single gate predict the discharge of parallel radial gates with a mean absolute error of less than 4.5% subject to the submerged operation of all open gates.  相似文献   
37.
Enhanced gravity concentrators such as Knelson concentrator (KC) are extensively used in the mineral processing industry. The complexities of KC bowl geometry and variation of feed characteristics have forced process engineers to design empirically new units using laboratory and pilot-scale Knelson concentrators. However, numerical modelling methods such as computational fluid dynamics (CFD) and discrete element method (DEM) provide a better insight of flow behaviour of fluid and particulate solid phases inside these processing units. This article reports findings of CFD simulations for single-phase water flow inside the laboratory KC. An available standard 7.5-cm laboratory KC bowl was numerically simulated using realisable k-ε turbulence model to resolve the turbulence dispersion of existing transitional flow regime. The effects of relative centrifugal force (RCF) intensity and bed fluidisation water flow rate on the water velocity and pressure distributions were studied. Simulations confirmed the swirling flow pattern governing inside the bowl. The results revealed that the impact of RCF intensity on the water field values is greater than that of bed fluidisation water flow rate. Both velocity and pressure variations inside the bowl rings followed a linear trend.  相似文献   
38.
In the harmonic active power measurement, the highest uncertainties are generally introduced by the current and voltage transducers. In a previous paper, the authors showed that the current transformer (CT) can introduce significant errors in such measurement, especially if the phase shift between voltage and current is close to ±90°. In such condition the errors on harmonic power measurement are mainly due to the CT phase displacement. This paper shows that better results can be achieved with more linear transducers, such as the Rogowski coil current transducers (RCCTs), whose metrological performance in distorted condition can be improved, by means of a proper compensation method. The proposed method for RCCTs compensation is based on the frequency response and it allows to reduce the errors on harmonic power measurement, also for phase shift close to ±90°. The study is supported by several experimental tests.  相似文献   
39.
PIV (Particle Image Velocimetry) technique for flow field measurement has achieved popular self-identify through over ten years development, and its application range is becoming wider and wider. PIV post-processing techniques have a great influence on the success of particle-fluid two-phase flow field measurement and thus become a hot and difficult topic. In the present study, a Phase Respective Identification Algorithm (PRIA) is introduced to separate low-density solid particles or bubbles and high-density tracer particles from the PIV image of particle-fluid two-phase flow. PTV (Particle Tracking Velocimetry) technique is employed to calculate the velocity fields of low-density solid particles or bubbles. For the velocity fields of high-density solid particles or bubble phase and continuous phase traced by high-density smaller particles, based on the thought of wavelet transform and multi-resolution analysis and the theory of cross-correlation of image, a delaminated processing algorithm (MCCWM) is presented to conquer the limitation of conventional Fourier transform. The algorithm is firstly testified on synthetic two-phase flows, such as uniform steady flow, shearing flow and rotating flow, and the computational results from the simulated particle images are in reasonable agreement with the given simulated data. The algorithm is then applied to images of actual bubble-liquid two-phase flow and jet flow, and the results also confirmed that the algorithm proposed in the present study has good performance and reliability for post-processing PIV images of particle-fluid two-phase flow.  相似文献   
40.
The knowledge of turbo code's minimum Hamming distance (dmin) and its corresponding codeword multiplicity (Amin) is of a great importance because the error correction capability of a code is strongly tied to the values of dmin and Amin. Unfortunately, the computational complexity associated with the search for dmin and Amin can be very high, especially for a turbo code that has high dmin value. This paper introduces some useful properties of turbo codes that use structured interleavers together with circular encoding. These properties allow for a significant reduction of search space and thus reduce significantly the computational complexity associated with the determination of dmin and Amin values. © 2014 The Authors. International Journal of Communication Systems published by John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号