全文获取类型
收费全文 | 1394篇 |
免费 | 498篇 |
国内免费 | 360篇 |
专业分类
电工技术 | 247篇 |
综合类 | 152篇 |
化学工业 | 101篇 |
金属工艺 | 24篇 |
机械仪表 | 114篇 |
建筑科学 | 26篇 |
矿业工程 | 10篇 |
能源动力 | 48篇 |
轻工业 | 14篇 |
水利工程 | 61篇 |
石油天然气 | 21篇 |
武器工业 | 16篇 |
无线电 | 162篇 |
一般工业技术 | 125篇 |
冶金工业 | 11篇 |
原子能技术 | 12篇 |
自动化技术 | 1108篇 |
出版年
2024年 | 108篇 |
2023年 | 121篇 |
2022年 | 181篇 |
2021年 | 154篇 |
2020年 | 131篇 |
2019年 | 132篇 |
2018年 | 126篇 |
2017年 | 104篇 |
2016年 | 114篇 |
2015年 | 108篇 |
2014年 | 116篇 |
2013年 | 111篇 |
2012年 | 119篇 |
2011年 | 125篇 |
2010年 | 85篇 |
2009年 | 84篇 |
2008年 | 76篇 |
2007年 | 62篇 |
2006年 | 47篇 |
2005年 | 38篇 |
2004年 | 24篇 |
2003年 | 20篇 |
2002年 | 12篇 |
2001年 | 7篇 |
2000年 | 12篇 |
1999年 | 5篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 2篇 |
1994年 | 4篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 3篇 |
1987年 | 1篇 |
1986年 | 1篇 |
排序方式: 共有2252条查询结果,搜索用时 0 毫秒
81.
目的 基于深度学习的动作识别方法识别准确率显著提升,但仍然存在很多挑战和困难。现行方法在一些训练数据大、分类类别多的数据集以及实际应用中鲁棒性较差,而且许多方法使用的模型参数量较大、计算复杂,提高模型准确度和鲁棒性的同时对模型进行轻量化仍然是一个重要的研究方向。为此,提出了一种基于知识蒸馏的轻量化时空图卷积动作识别融合模型。方法 改进最新的时空卷积网络,利用分组卷积等设计参数量较少的时空卷积子模型;为了训练该模型,选取两个现有的基于全卷积的模型作为教师模型在数据集上训练,在得到训练好的教师模型后,再利用知识蒸馏的方法结合数据增强技术训练参数量较少的时空卷积子模型;利用线性融合的方法将知识蒸馏训练得到的子模型融合得到最终的融合模型。结果 在广泛使用的NTU RGB + D数据集上与前沿的多种方法进行了比较,在CS(cross-subject)和CV(cross-view)两种评估标准下,本文模型的准确率分别为90.9%和96.5%,与教师模型2s-AGCN(two-stream adaptive graph convolutional networks for skeleton-based action)相比,分别提高了2.4%和1.4%;与教师模型DGNN(directed graph neural network)相比,分别提高了1.0%和0.4%;与MS-AAGCN(multi-stream attention-enhanced adaptive graph convolutional neural network)模型相比,分别提高了0.9%和0.3%。结论 本文提出的融合模型,综合了知识蒸馏、数据增强技术和模型融合的优点,使动作识别更加准确和鲁棒。 相似文献
82.
针对传统机器学习在处理暂态稳定评估时所表现出的稳定性差、精度低等问题以及离线训练的局限性,提出一种基于多模型融合Bagging集成学习方式的电力系统暂态稳定在线评估模型。首先,结合人工智能前沿理论研究,分析了暂态稳定评估中常用的7种机器学习算法的原理及实现方式,通过Bagging方法进行集成,充分发挥各个模型的优势。其次,给出Bagging集成的数学实现方法并进行了仿真实验。当原系统拓扑结构发生改变时,采用Boosting算法和迁移成分分析,分别对原电网历史数据进行样本迁移和特征迁移,完成对所提模型的在线更新。通过采用IEEE10机39节点系统和IEEE16机68节点系统进行分析,结果表明所提方法比传统机器学习模型精度更高。当数据中掺杂噪声时能够保持稳定运行,在系统拓扑改变时能够通过迁移历史数据进行准确的暂态稳定评估。 相似文献
83.
84.
医学诊断中集成学习技术的研究 总被引:1,自引:1,他引:0
计算机辅助医学诊断是机器学习技术的一个重要实践,但是在医学诊断中一个重要影响因素来自于数据集中的冗余特征。为了消除诊断中冗余特征对集成学习方法的精度的影响,文章提出了一种PCA-FS-Bagging算法,利用主成份分析进行特征变换来解决这个问题,算法在三个医学诊断数据集上与其它算法比如单个支持向量机、支持向量机Bagging集成等进行了性能比较,结果显示了PCA-FS-Bagging算法具有较好的性能。 相似文献
85.
Ubiquitylation is an important process of post-translational modification. Correct identification of protein lysine ubiquitylation sites is of fundamental importance to understand the molecular mechanism of lysine ubiquitylation in biological systems. This paper develops a novel computational method to effectively identify the lysine ubiquitylation sites based on the ensemble approach. In the proposed method, 468 ubiquitylation sites from 323 proteins retrieved from the Swiss-Prot database were encoded into feature vectors by using four kinds of protein sequences information. An effective feature selection method was then applied to extract informative feature subsets. After different feature subsets were obtained by setting different starting points in the search procedure, they were used to train multiple random forests classifiers and then aggregated into a consensus classifier by majority voting. Evaluated by jackknife tests and independent tests respectively, the accuracy of the proposed predictor reached 76.82% for the training dataset and 79.16% for the test dataset, indicating that this predictor is a useful tool to predict lysine ubiquitylation sites. Furthermore, site-specific feature analysis was performed and it was shown that ubiquitylation is intimately correlated with the features of its surrounding sites in addition to features derived from the lysine site itself. The feature selection method is available upon request. 相似文献
86.
Aiming at the problems of the low detection rate of traditional intrusion detection systems and the long training and detection time of intrusion detection systems based on deep learning,an adaptive binning feature selection algorithm using the information gain is proposed,which is combined with LightGBM to design a fast network intrusion detection system.First,the original data set is preprocessed to standardize the data;then the redundant features and noise in the original data are removed through the adaptive binning feature selection algorithm,and the original high-dimensional data are reduced to the low-dimensional data,thereby improving the accuracy of the system and reducing the training and detection time;finally,LightGBM is used for model training on the training set selected by the characteristics to train an intrusion detection system that can detect attack traffic.Through verification on the NSL-KDD data set,the proposed feature selection algorithm only takes 27.35 seconds in feature selection,which is 96.68% lower than that by the traditional algorithm.The designed intrusion detection system has an accuracy rate of 93.32% on the test set,and its training time is low.Compared with the existing network intrusion detection system,the accuracy rate of the proposed system is higher,and its model training speed is faster. 相似文献
87.
针对负荷预测模型迭代训练过程中存在误差积累的问题,提出结合叠式双向门控循环单元(SBiGRU)、完整自适应噪声集成经验模态分解(CEEMDAN)和误差修正的组合预测模型. 建立SBiGRU模型学习在气温、日期类型影响下负荷序列的时序特征,误差特征体现在SBiGRU模型预测产生的误差序列中;使用CEEMDAN算法将误差序列分解为数个本征模态函数(IMF)分量与趋势分量,对每项分量再次建立SBiGRU模型进行学习与预测,并对各分量的预测值进行序列重构,得到误差的预测结果;对预测结果进行求和以修正误差. 模型评估结果表明,组合模型的预测准确精度为98.86%,与SBiGRU、BiRNN、支持向量回归等方法相比,该模型具有更好的精度. 相似文献
88.
为了增强集成系统中各分类器之间的差异性,提出了一种使用旋转森林策略集成两种不同模型分类器的方法,即异构多分类器集成学习算法.首先采用旋转森林对原始样本集进行变换划分,获得新的样本集;然后通过特定比例选择分类精度高的支撑矢量机或分类速度较快的核匹配追踪作为基本的集成个体分类器,并对新样本集进行分类,获得其预测标记;最后结合两种模型下的预测标记.该算法通过结合两种不同分类器模型,实现了精度和速度互补,将二者混合集成后改善了集成系统泛化误差,相比单个模型集成提高了系统分类性能.对UCI数据集和遥感图像数据集的仿真实验结果表明,文中算法相比单一分类器集成缩短了运行时间,同时提高了系统的分类准确率. 相似文献
89.
针对蛋白质相互作用(protein-protein interaction,PPI)网络的信息不完善和高噪声问题,提出一种融合多生物数据的二分图聚类集成方法以检测网络中的功能模块.该方法结合了基因本体论(gene ontology,GO)、基因表达谱数据以及多种基础聚类算法,用一种新的二分图来组织多种基础聚类算法的中间结果,并结合对称非负矩阵分解(non-negative matrix factorization,NMF)算法挖掘其中功能意义上最一致蛋白质功能模块,同时,该算法能处理蛋白质功能重叠问题.实验结果表明:所提算法整体优于基准比较方法,是一种融合多种生物信息源和不同的聚类方法的有效途径. 相似文献
90.
为有效控制工程机械驾驶室内噪声,利用集合经验模态分解(ensemble empirical mode decomposition, EEMD)后的本征模函数作为稳定独立成分分析(independent component analysis, ICA)算法中的多个虚拟通道,提出了基于EEMD和ICA相结合的驾驶室内噪声盲源分离方法。通过分析仿真信号验证了EEMD-ICA方法研究复杂非平稳信号可行。结合相干分析、时频分析方法研究推土机驾驶室内噪声特性。结果表明,柴油机的1/2阶、1阶转动频率是驾驶室内相关零部件的振动辐射噪声的主要激励来源,柴油机的燃烧噪声也是室内噪声的来源。通过相干分析与时频分析相结合的技术可较准确实现噪声源定位,结合测试对象的相关常识可实现对噪声类型判别、噪声传入途径等复杂的问题进行研究,为进一步实现驾驶室内噪声治理、故障诊断,提供经济实用的分析手段。 相似文献