首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26601篇
  免费   3535篇
  国内免费   2217篇
电工技术   1686篇
综合类   2241篇
化学工业   5916篇
金属工艺   2075篇
机械仪表   879篇
建筑科学   686篇
矿业工程   429篇
能源动力   2977篇
轻工业   1200篇
水利工程   322篇
石油天然气   1987篇
武器工业   300篇
无线电   3089篇
一般工业技术   3166篇
冶金工业   1270篇
原子能技术   520篇
自动化技术   3610篇
  2024年   156篇
  2023年   898篇
  2022年   1260篇
  2021年   1234篇
  2020年   1203篇
  2019年   1098篇
  2018年   930篇
  2017年   1004篇
  2016年   1086篇
  2015年   1120篇
  2014年   1541篇
  2013年   1804篇
  2012年   1837篇
  2011年   1939篇
  2010年   1431篇
  2009年   1449篇
  2008年   1347篇
  2007年   1609篇
  2006年   1448篇
  2005年   1244篇
  2004年   1080篇
  2003年   933篇
  2002年   805篇
  2001年   728篇
  2000年   558篇
  1999年   467篇
  1998年   362篇
  1997年   287篇
  1996年   250篇
  1995年   238篇
  1994年   183篇
  1993年   144篇
  1992年   106篇
  1991年   94篇
  1990年   113篇
  1989年   75篇
  1988年   59篇
  1987年   41篇
  1986年   17篇
  1985年   31篇
  1984年   38篇
  1983年   23篇
  1982年   17篇
  1981年   9篇
  1980年   7篇
  1979年   6篇
  1974年   3篇
  1963年   3篇
  1959年   7篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
将强跟踪思想引入容积卡尔曼滤波(cubature Kalman filter,CKF),建立强跟踪CKF能有效克服CKF在模型不确定、状态突变等情况下,滤波性能下降的问题。通过分析现有多渐消因子计算方法,发现它们均只利用了协方差矩阵的对角线元素,并没有考虑各个状态之间的相关性,不能充分发挥多渐消因子的优势。为此,本文提出渐消因子矩阵,基于正交原理推导渐消因子矩阵的求解方法,提出多渐消因子强跟踪CKF算法。多渐消因子强跟踪CKF算法突破了传统多渐消因子为向量的限制,也不再要求渐消因子取值要大于1。仿真验证了算法具有更好的滤波精度何鲁棒性,能更好的满足工程应用的要求。  相似文献   
22.
With the ambition of solving the challenges of the shortage of fossil fuels and their associated environmental pollution, visible-light-driven splitting of water into hydrogen and oxygen using semiconductor photocatalysts has emerged as a promising technology to provide environmentally friendly energy vectors. Among the current library of developed photocatalysts, organic conjugated polymers present unique advantages of sufficient light-absorption efficiency, excellent stability, tunable electronic properties, and economic applicability. As a class of rising photocatalysts, organic conjugated polymers offer high flexibility in tuning the framework of the backbone and porosity to fulfill the requirements for photocatalytic applications. In the past decade, significant progress has been made in visible-light-driven water splitting employing organic conjugated polymers. The recent development of the structural design principles of organic conjugated polymers (including linear, crosslinked, and supramolecular self-assembled polymers) toward efficient photocatalytic hydrogen evolution, oxygen evolution, and overall water splitting is described, thus providing a comprehensive reference for the field. Finally, current challenges and perspectives are also discussed.  相似文献   
23.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
24.
25.
氢工质在新能源与动力、航天推进、化工材料等领域有着广泛应用。通过开展高温氢工质热力学与输运性质研究,建立了原子态氢、分子态氢、热解平衡态氢的热物理性质计算模型,开发了热物性计算程序Prop_H_H2,适用范围为温度100~3 500 K、压力104~5×107 Pa 。验证表明,Prop_H_H2在适用范围内计算氢工质的物性参数合理可靠,在温度200~3 000 K、压力104~107 Pa范围内,程序预测值更加准确,相对偏差在±5%左右。本研究可为氢工质相关的航天推进、应用物理学、能源动力等行业的科研和应用提供支持借鉴。  相似文献   
26.
The need to reduce PEMFC systems cost as well as to increase their durability is crucial for their integration in various applications and especially for transport applications. A new simplified architecture of the anode circuit called Alternating Fuel Feeding (AFF) offers to reduce the development costs. Requiring a new stack concept, it combines the simplicity of Dead-End Anode (DEA) with the operation advantages of the hydrogen recirculation. The three architectures (DEA, recirculation and AFF) are compared in terms of performance on a 5-kW test bench in automotive conditions, through a sensitivity analysis. A gain of 17% on the system efficiency is observed when switching from DEA to AFF. Moreover, similar performances are obtained both for AFF and for recirculation after an accurate optimization of the AFF tuning parameters. Based on DoE data, a gain of 25% on the weight of the anodic line has been identified compared to pulsed ejector architecture and 43% with the classic recirculation architecture with blower only (Miraï).  相似文献   
27.
概述了氢的主要工业生产方法和实际应用,详细介绍了氯碱氢三级脱水工艺过程,并运用在线分析手段,准确显示了干燥过程中的氯碱氢水分含量变化规律。  相似文献   
28.
The primary aim of this study is to provide insights into different low-carbon hydrogen production methods. Low-carbon hydrogen includes green hydrogen (hydrogen from renewable electricity), blue hydrogen (hydrogen from fossil fuels with CO2 emissions reduced by the use of Carbon Capture Use and Storage) and aqua hydrogen (hydrogen from fossil fuels via the new technology). Green hydrogen is an expensive strategy compared to fossil-based hydrogen. Blue hydrogen has some attractive features, but the CCUS technology is high cost and blue hydrogen is not inherently carbon free. Therefore, engineering scientists have been focusing on developing other low-cost and low-carbon hydrogen technology. A new economical technology to extract hydrogen from oil sands (natural bitumen) and oil fields with very low cost and without carbon emissions has been developed and commercialized in Western Canada. Aqua hydrogen is a term we have coined for production of hydrogen from this new hydrogen production technology. Aqua is a color halfway between green and blue and thus represents a form of hydrogen production that does not emit CO2, like green hydrogen, yet is produced from fossil fuel energy, like blue hydrogen. Unlike CCUS, blue hydrogen, which is clearly compensatory with respect to carbon emissions as it captures, uses and stores produced CO2, the new production method is transformative in that it does not emit CO2 in the first place. In order to promote the development of the low-carbon hydrogen economy, the current challenges, future directions and policy recommendations of low-carbon hydrogen production methods including green hydrogen, blue hydrogen, and aqua hydrogen are investigated in the paper.  相似文献   
29.
A large-scale point to point hydrogen transport is one strategy for a prospective energy import scenario for certain countries. The case for a hydrogen transport from Australia to Japan has been addressed in several studies. However, most studies lack transparency and detailed insights into the made assumptions thus a fair evaluation of different transport pathways is challenging. To address this issue, we developed a model where a large-scale point to point hydrogen transport of liquid hydrogen is compared with the transport via liquid organic hydrogen carrier (LOHC), namely via methyl cyclohexane and hydrogenated dibenzyl toluene. We analyzed, where energy is required along the different pathways, where hydrogen losses do occur and how the costs are put together. Furthermore, the influence of hydrogen feed costs is also considered. For hydrogen production costs of 5 €2018/kgH2 the total delivery costs are in the range of 6.40– 8.10 €2018/kgH2.  相似文献   
30.
This study investigates the ability of hydrogen (H2) to wet clay surfaces in the presence of brine, with implications for underground hydrogen storage in clay-containing reservoirs. Rather than measuring contact angles directly with hydrogen gas, a suite of other gases (carbon dioxide (CO2), argon (Ar), nitrogen (N2), and helium (He)) were employed in the gas-brine-clay system under storage conditions (moderate temperature (333 K) and high pressures (5, 10, 15, and 20 MPa)), characteristic of a subsurface environment with a shallow geothermal gradient. By virtue of analogies to H2 and empirical correlations, wettabilities of hydrogen on three clay surfaces were mathematically derived and interpreted. The three clays were kaolinite, illite, and montmorillonite and represent 1:1, 2:1 non-expansive, and 2:1 expansive clay groups, respectively. All clays showed water-wetting behaviour with contact angles below 40° under all experimental set-ups. It follows that the presence of clays in the reservoir (or caprock) is conducive to capillary and/or residual trapping of the gas. Another positive inference is that any tested gas, particularly nitrogen, is suitable as cushion gas to maintain formation pressure during hydrogen storage because they all turned out to be more gas-wetting than hydrogen on the clay surfaces; this allows easier displacement and/or retrieval of hydrogen during injection/production. One downside of the predominant water wettability of the clays is the upstaged role of biogeochemical reactions at the wetted brine-clay/silicate interface and their potential to affect porosity and permeability. Water-wetting decreased from kaolinite as most water-wetting clay over illite to montmorillonite as most hydrogen-wetting clay. Their wetting behaviour is consistent with molecular dynamic modelling that establishes that the accessible basal plane of kaolinite's octahedral sheet is highly hydrophilic and enables strong hydrogen bonds whereas the same octahedral sheet in illite and montmorillonite is not accessible to the brine, rendering these clays less water-wetting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号