排序方式: 共有41条查询结果,搜索用时 15 毫秒
11.
Silvia Attardo Olimpia Musumeci Daniele Velardo Antonio Toscano 《International journal of molecular sciences》2022,23(15)
Statins are drugs widely prescribed in high-risk patients for cerebrovascular or cardiovascular diseases and are, usually, safe and well tolerated. However, these drugs sometimes may cause neuromuscular side effects that represent about two-third of all adverse events. Muscle-related adverse events include cramps, myalgia, weakness, immune-mediated necrotizing myopathy and, more rarely, rhabdomyolysis. Moreover, they may lead to peripheral neuropathy and induce or unmask a preexisting neuromuscular junction dysfunction. A clinical follow up of patients assuming statins could reveal early side effects that may cause neuromuscular damage and suggest how to better modulate their use. In fact, statin dechallenge or cessation, or the alternative use of other lipid-lowering agents, can avoid adverse events. This review summarizes the current knowledge on statin-associated neuromuscular adverse effects, diagnosis, and management. It is conceivable that the incidence of neuromuscular complications will increase because, nowadays, use of statins is even more diffused than in the past. On this purpose, it is expected that pharmacogenomic and environmental studies will help to timely predict neuromuscular complications due to statin exposure, leading to a more personalized therapeutic approach. 相似文献
12.
13.
Johan Lindqvist Justin Kolb Josine de Winter Paola Tonino Zaynab Hourani Siegfried Labeit Coen Ottenheijm Henk Granzier 《International journal of molecular sciences》2022,23(15)
Nemaline myopathy (NM) is characterized by skeletal muscle weakness and atrophy. No curative treatments exist for this debilitating disease. NM is caused by mutations in proteins involved in thin-filament function, turnover, and maintenance. Mutations in nebulin, encoded by NEB, are the most common cause. Skeletal muscle atrophy is tightly linked to upregulation of MuRF1, an E3 ligase, that targets proteins for proteasome degradation. Here, we report a large increase in MuRF1 protein levels in both patients with nebulin-based NM, also named NEM2, and in mouse models of the disease. We hypothesized that knocking out MuRF1 in animal models of NM with muscle atrophy would ameliorate the muscle deficits. To test this, we crossed MuRF1 KO mice with two NEM2 mouse models, one with the typical form and the other with the severe form. The crosses were viable, and muscles were studied in mice at 3 months of life. Ultrastructural examination of gastrocnemius muscle lacking MuRF1 and with severe NM revealed a small increase in vacuoles, but no significant change in the myofibrillar fractional area. MuRF1 deficiency led to increased weights of various muscle types in the NM models. However, this increase in muscle size was not associated with increased in vivo or in vitro force production. We conclude that knocking out MuRF1 in NEM2 mice increases muscle size, but does not improve muscle function. 相似文献
14.
Paula Kasprzyk Pawe M. Wrbel Joanna Dudaa Kalotina Geraki Magdalena Szczerbowska-Boruchowska Edyta Radwaska Roger M. Krzyewski Dariusz Adamek Marek Lankosz 《International journal of molecular sciences》2022,23(14)
Diseases of the muscle tissue, particularly those disorders which result from the pathology of individual muscle cells, are often called myopathies. The diversity of the content of individual cells is of interest with regard to their role in both biochemical mechanisms and the structure of muscle tissue itself. These studies focus on the preliminary analysis of the differences that may occur between diseased tissues and tissues that have been recognised as a reference group. To do so, 13 samples of biopsied human muscle tissues were studied: 3 diagnosed as dystrophies, 6 as (non-dystrophic) myopathy and 4 regarded as references. From these sets of muscle biopsies, 135 completely measured muscle fibres were separated altogether, which were subjected to investigations using synchrotron radiation X-ray fluorescence (SR-XRF). Muscle fibres were analysed in terms of the composition of elements such as Br, Ca, Cl, Cr, Cu, Fe, K, Mn, P, S and Zn. The performed statistical tests indicate that all three groups (dystrophies—D; myopathies—M; references—R) show statistically significant differences in their elemental compositions, and the greatest impact, according to the multivariate discriminate analysis (MDA), comes from elements such as Ca, Cu, K, Cl and S. 相似文献
15.
16.
17.
Raquel Gmez-Oca Belinda S. Cowling Jocelyn Laporte 《International journal of molecular sciences》2021,22(21)
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets. 相似文献
18.
Anna Ghilardi Alberto Diana Renato Bacchetta Nadia Santo Miriam Ascagni Laura Prosperi Luca Del Giacco 《International journal of molecular sciences》2021,22(12)
The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene. 相似文献
19.
Magorzata
liwinska Katarzyna Robaszkiewicz Piotr Wasg Joanna Moraczewska 《International journal of molecular sciences》2021,22(8)
Tropomyosin is a two-chain coiled coil protein, which together with the troponin complex controls interactions of actin with myosin in a Ca2+-dependent manner. In fast skeletal muscle, the contractile actin filaments are regulated by tropomyosin isoforms Tpm1.1 and Tpm2.2, which form homo- and heterodimers. Mutations in the TPM2 gene encoding isoform Tpm2.2 are linked to distal arthrogryposis and congenital myopathy—skeletal muscle diseases characterized by hyper- and hypocontractile phenotypes, respectively. In this work, in vitro functional assays were used to elucidate the molecular mechanisms of mutations Q93H and E97K in TPM2. Both mutations tended to decrease actin affinity of homo-and heterodimers in the absence and presence of troponin and Ca2+, although the effect of Q93H was stronger. Changes in susceptibility of tropomyosin to trypsin digestion suggested that the mutations diversified dynamics of tropomyosin homo- and heterodimers on the filament. The presence of Q93H in homo- and heterodimers strongly decreased activation of the actomyosin ATPase and reduced sensitivity of the thin filament to [Ca2+]. In contrast, the presence of E97K caused hyperactivation of the ATPase and increased sensitivity to [Ca2+]. In conclusion, the hypo- and hypercontractile phenotypes associated with mutations Q93H and E97K in Tpm2.2 are caused by defects in Ca2+-dependent regulation of actin–myosin interactions. 相似文献
20.
Small angle X-ray fiber diffraction is the method of choice for obtaining molecular level structural information from striated muscle fibers under hydrated physiological conditions. For many decades this technique had been used primarily for investigating basic biophysical questions regarding muscle contraction and regulation and its use confined to a relatively small group of expert practitioners. Over the last 20 years, however, X-ray diffraction has emerged as an important tool for investigating the structural consequences of cardiac and skeletal myopathies. In this review we show how simple and straightforward measurements, accessible to non-experts, can be used to extract biophysical parameters that can help explain and characterize the physiology and pathology of a given experimental system. We provide a comprehensive guide to the range of the kinds of measurements that can be made and illustrate how they have been used to provide insights into the structural basis of pathology in a comprehensive review of the literature. We also show how these kinds of measurements can inform current controversies and indicate some future directions. 相似文献