This study examined impacts of concentrations and properties of natural organic matter (NOM) on copper release from characteristic copper solid model phases such as tenorite CuO and malachite Cu2(OH)2CO3. Unaltered Aldrich humic acid (AHA) and standard Suwannee River fulvic acid (SRFA) strongly increased copper release from the model phases but NOM alteration by chlorination or ozonation gradually suppressed or, at higher oxidant doses, eliminated these effects. The nature of NOM changes induced by chlorination and ozonation was examined using differential absorbance spectroscopy (DAS) and high-performance size-exclusion chromatography (HPSEC). The data of these methods show that NOM molecules with higher apparent molecular weight (AMW), higher aromaticities and contributions of protonation-active phenolic and carboxylic groups play a key role in adsorption and colloidal dispersion of the model solids. The data also show that metal release from model phases was well correlated with a number of spectroscopic parameters characterizing NOM properties, notably SUVA254, spectral slopes of NOM absorbance, and differential absorbance at wavelength of 280 nm and 350 nm that is indicative of the contributions of carboxylic and phenolic functional groups. Changes of ζ-potential of the model solid phases were the strongest predictor of the enhancement of copper release especially in the system controlled by malachite. While effects of NOM on the ζ-potential of tenorite and malachite were prominent for unaltered NOM, its oxidation by chlorine and ozone was accompanied by a gradual decrease and ultimately disappearance of its surface activity. 相似文献
Yttrium-stabilized zirconia nanotubes (YSZNTs) were prepared using a conventional hydrothermal method, and their characteristics were compared with those of yttrium-stabilized zirconia nanoparticles (YSZNPs) synthesized in this study and with those of commercial YSZNPs (CYSZNPs). YSZNTs had widths and lengths of 20–30 nm and 100–700 nm respectively. The electrical conductivity of NiO (60.0 wt%)-loaded YSZNTs (40.0 wt%) was higher than those of NiO/YSZNPs and NiO/CYSZNPs at the same NiO loading. The zeta-potentials of YSZNTs in aqueous solution, determined by electrophoretic light scattering (ELS), indicated high positive surface charges at lower pH values, which is known to be related to surface stability, but negative values at high pH. The results of cyclic voltammetry (CV) and H2-temperature-programmed reduction (H2-TPR) confirmed that NiO(60.0 wt%)/YSZNTs (Ered = −0.445 mV) were more reduced than NiO/YSZNPs (Ered = −0.517 mV) and NiO/CYSZNPs (Ered = −0.516 mV). 相似文献
We have developed a metal‐free process for the aerobic photooxygenation of sulfides to sulfoxides mediated by riboflavin tetraacetate or riboflavin (vitamin B2) photocatalysts and visible light (450 nm) in an acetonitrile‐water (85:15 v/v) mixture. The optimised solvent system leads to both singlet‐oxygen and electron‐transfer pathways in photooxygenation, thus allowing oxidation of electron‐poor and electron‐rich thioanisoles, dialkyl sulfides and sterically hindered sulfides. Besides having a broad substrate scope, the method has very short reaction times and requires low catalyst loading (down to 0.1 mol%). These properties are due to the high photocatalyst stability and the extremely high quantum yields (1.3 for thioanisole oxygenation). Moreover, the method is chemoselective, producing only sulfoxides without overoxidation to sulfones. Taking into account the broad substrate scope, high selectivity and high efficiency, this method distinguishes itself from those previously reported. Other advantages include easy work‐up of the reaction mixture, the availability and biodegradability of the photocatalysts and mild reaction conditions. We demonstrated, on a preparative scale, its practical application in the synthesis of the psychostimulant modafinil, in the selective oxidation of methionine derivatives, and in the detoxification of mustard gas.
A new visible light‐initiated 1,5‐hydride radical shift strategy has been developed to enable the one‐step functionalization of both a C(sp3) Br bond and a C(sp3) H bond adjacent to the same carbon atom. This visible light photoredox catalysis offers a mild and straightforward access to diverse five‐membered carbocyclic ring‐fused polycyclic hydrocarbons with high turnover numbers (TONs; up to 4.93×103) and broad substrate scope.