首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   6篇
  国内免费   33篇
电工技术   1篇
综合类   6篇
化学工业   13篇
金属工艺   14篇
机械仪表   24篇
无线电   103篇
一般工业技术   14篇
冶金工业   1篇
自动化技术   6篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2017年   4篇
  2016年   6篇
  2015年   3篇
  2014年   9篇
  2013年   10篇
  2012年   20篇
  2011年   11篇
  2010年   14篇
  2009年   8篇
  2008年   17篇
  2007年   7篇
  2006年   12篇
  2005年   6篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1992年   1篇
  1990年   1篇
排序方式: 共有182条查询结果,搜索用时 46 毫秒
21.
The high inherent surface roughness of as-deposited polycrystalline diamond films has made effective planarization processing of these films essential for most industrial applications. We have investigated the efficacy of ion beam sources for planarization in an electron cyclotron resonance plasma system using both direct substrate biasing and an accelerating grid system. Rough polycrystalline diamond films were synthesized using hot filament chemical vapor deposition. Both the etching rates and the resultant surface roughnesses were found to decrease as the angle of incidence (relative to the substrate surface normal) of the ion beam was increased. In the case of direct biasing of the sample, acicular features were observed following processing at higher incident angles. The use of double ion-extraction grids in conjunction with concomitant sample rotation was found to produce more uniform planarization of the diamond films. The rate of surface roughness reduction was found to be nonlinear and decreased with time. For both ion extraction methods investigated, the average film roughness (Ra) was significantly reduced from 0.2 to 0.05–0.06 μm.  相似文献   
22.
Mechanistic numerical analysis and molecular dynamics (MD) simulation are employed to understand the material detachment mechanism associated with chemical mechanical polishing. We investigate the mechanics of scratch intersection mechanism to obtain a characteristic length scale and compare the theoretical predictions with previous experimental observations on ductile copper discs at the micro-scale. First, an analytical model is developed based on mechanics of materials approach. The analytical model includes the effects of strain hardening during material removal as well as the geometry of indenter tip. In the next step, molecular simulations of the scratch intersection are performed at the atomistic scale. The embedded atom method (EAM) is utilized as the force field for workpiece material and a simplified tool-workpiece interaction is assumed to simulate material removal through scratch intersection mechanism. Both models are utilized to predict a characteristic length of material detachment related to material removal during scratch intersection. The predictions from two approaches are compared with experimental observations in order to draw correlations between experiment and simulation. The insights obtained from this work may assist in understanding the mechanism for chemical mechanical planarization (CMP), and even be applied to other different machining and polishing events.  相似文献   
23.
纳米氧化硅在玻璃基片表面亚纳米级抛光中的应用   总被引:4,自引:0,他引:4  
为满足先进电子产品对玻璃基片表面超光滑的要求,制备了一种纳米氧化硅抛光液,并研究了氧化硅粒子大小、抛光时间等参数对玻璃基片抛光后表面粗糙度、材料去除速率的影响。ZYGO形貌仪表明,采用纳米氧化硅抛光液,可以使玻璃表面粗糙度达到0.5 nm左右。AFM表明,抛光后的玻璃基片表面超光滑且无划痕等微观缺陷。  相似文献   
24.
化学机械抛光的研究进展   总被引:1,自引:0,他引:1  
化学机械抛光简称CMP技术是迄今唯一的可以提供整体平面化的表面精加工技术,可广泛用于集成电路芯片、计算机硬磁盘、微型机械系统等表面的平坦化。介绍了半导体加工领域CMP技术的特点,重点叙述了CMP技术的发展历程、设备特性、研磨抛光耗材和应用领域的技术现状,指出CMP急待解决的技术和理论问题,并对其发展方向进行展望。  相似文献   
25.
An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) AlN surface has been demonstrated. The effect of slurry pH, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(1122) AlN surface has been compared with that of the(1122) AlGaN surface. The maximum MRR has been found to be ~562 nm/h for the semi-polar(1122) AlN surface, under the experimental conditions of 38 kPa pressure, 90 rpm platen velocity, 30 rpm carrier velocity, slurry pH 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of ~1.2 nm and ~0.7 nm, over a large scanning area of 0.70×0.96 mm2, has been achieved on AFCMP processed semi-polar(1122) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.  相似文献   
26.
 离散磁道式磁盘在与磁头瞬态接触过程中极易损坏.为改善离散磁道式磁盘的瞬态接触状况,采用有限元仿真方法,建立了平整化前后离散磁道式磁盘与磁头的瞬态接触模型,分析了平整化前后离散磁道式磁盘接触应力分布特点,研究了磁头冲击速度、径向速度、磁盘表面摩擦系数等接触条件及平整化对离散磁道式磁盘最大等效塑性应变、塑性应变总体积的影响.结果表明:磁头冲击速度、寻道速度增大均可导致磁盘最大等效塑性应变、塑性应变总体积增大;摩擦系数增大可增大磁道最大等效塑性应变、减小塑性应变总体积;在接触初期,平整化离散磁道式磁盘可以减小磁道最大接触应力,缓解应力集中现象;在接触全过程中,平整化离散磁道式磁盘可以减小磁道最大等效塑性应变及塑性应变总体积;平整化所用2种弹性模量等力学特性不同的填充材料,即磁道材料与类金刚石碳,对于磁道接触状况的改善作用区别较小.以上结论可为降低离散磁道式磁盘的破坏程度提供理论指导.  相似文献   
27.
Surface planarization and masked ion-beam structuring (MIBS) of high-Tc superconducting (HTS) YBa2Cu3O7-δ (YBCO) thin films grown by pulsed-laser deposition (PLD) method is reported. Chemical-mechanical polishing, plasma etching, and oxygen annealing of YBCO films strongly reduce the particulate density (~ 10-2 ×) and surface roughness (~ 10-1 ×) of as-grown PLD layers. The resistivity, critical temperature Tc ≈ 90 K and critical current density Jc (77 K) > 1 MA/cm2 of films are not deteriorated by the planarization procedure. The YBCO films are modified and patterned by irradiation with He+ ions of 75 keV energy. Superconducting tracks patterned by MIBS without removal of HTS material and, for comparison, by wet-chemical etching show same Tc and Jc(T) values. Different micro- and nano-patterns are produced in parallel on planarized films. The size of irradiated pattern depends on the mask employed for beam shaping and features smaller than 70 nm are achieved.  相似文献   
28.
Chemical mechanical polishing (CMP) has been introduced in the semiconductor manufacturing industry in order to achieve global planarization of wafer surfaces. Lately, copper has replaced aluminum for its better electrical and mechanical properties.Cu CMP consists in the transformation of the copper surface layer to copper oxide, which is then removed by alumina abrasive particles. The oxidizer is the chemical agent that transforms the copper into copper oxide.We have been studying the influence of ferric nitrate as oxidizer on the copper CMP.We evaluated the nature of the copper oxide with XPS observation. We found it was cuprous oxide (Cu2O) that was actually removed by the abrasive particles.We observed that the removal rate increased with the oxidizer concentration for low concentrations, but was almost constant for higher concentrations.We also evaluated what becomes of the polishing residues for short time processes, once they are removed from the surface. The remaining copper particles are too small to be responsible for any posterior damage of the surface.  相似文献   
29.
A multistep imprinting process is presented for the fabrication of a bottom-contact, bottom-gate thin-film transistor (TFT) on poly(ethylene naphthalate) (PEN) foil by patterning all layers of the metal–insulator–metal stack by UV nanoimprint lithography (UV NIL). The flexible TFTs were fabricated on a planarization layer, patterned in a novel way by UV NIL, on a foil reversibly glued to a Si carrier. This planarization step enhances the dimensional stability and flatness of the foil and thus results in a thinner and more homogeneous residual layer. The fabricated TFTs have been electrically characterized as demonstrators of the here developed fully UV NIL-based patterning process on PEN foil, and compared to TFTs made on Si with the same process. TFTs with channel lengths from 5 μm down to 250 nm have been fabricated on Si and PEN foil, showing channel length-dependent charge carrier mobilities, μ, in the range of 0.06–0.92 cm2 V−1 s−1 on Si and of 0.16–0.56 cm2 V−1 s−1 on PEN foil.  相似文献   
30.
基于化学机械动力学的碱性铜抛光液平坦化机理研究   总被引:1,自引:1,他引:0  
The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号