首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   15篇
  国内免费   3篇
电工技术   8篇
化学工业   39篇
无线电   5篇
一般工业技术   5篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   4篇
  2013年   7篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有57条查询结果,搜索用时 0 毫秒
51.
The hydrostatic piezoelectric coefficient dh of Pb(ZrxTi1 – x)O3 ceramics (PZT), and of Pb(Zn1/3Nb2/ 3)O3-PbTiO3 and Pb(Yb1/2Nb1/2)O3-PbTiO3 (PZN-PT, PYN-PT, respectively) single crystals with compositions near to the morphotropic phase boundary (MPB) have been measured using a dynamic hydrostatic method. The effects of DC electric field and static component of hydrostatic stress on dh of PZT ceramics, PZN-PT and PYN-PT single crystals were studied. Changes of the piezoelectric hydrostatic coefficients dh caused by an electric field (DC bias) were observed along with pressure and temperature dependencies. The measurement of the hydrostatic piezoelectric coefficient dh seems to be promising for investigation of intrinsic (single domain) and extrinsic (domain-walls) contributions to piezoelectric behavior of single crystals and ceramic materials.  相似文献   
52.
ABSTRACT

CaBi1.5La0.5Nb2O9 ceramics were prepared by a conventional solid-state reaction method. Their structure and dielectric properties were investigated. X-ray diffraction analysis indicated that single phase layered perovskites were obtained. Dielectric studies demonstrated that CaBi1.5La0.5Nb2O9 is characteristic of relaxor ferroelectrics. The dielectric relaxation of CaBi1.5La0.5Nb2O9 was modeled using the Vögel-Fulcher relationship, and the dielectric relaxation in CaBi1.5La0.5Nb2O9 is found to be analogous to a spin glass with thermally activated polarization fluctuations above a static freezing temperature.  相似文献   
53.
Dielectric capacitors with high energy storage performance are in great demand for emerging advanced energy storage applications. Relaxor ferroelectrics are one type dielectric materials possessing high energy storage density and energy efficiency simultaneously. In this study, 0.9(Sr0.7Bi0.2)TiO3–0.1Bi(Mg0.5Me0.5)O3 (Me = Ti, Zr, and Hf) dielectric relaxors are designed and the corresponding energy storage properties are investigated. The excellent recoverable energy density of 3.1 J/cm3 with a high energy efficiency of 93% is achieved at applied electric field of 360 kV/cm for 0.9(Sr0.7Bi0.2)TiO3–0.1Bi(Mg0.5Hf0.5)O3 (0.9SBT–0.1BMH) ceramic. High breakdown strength of 460 kV/cm in 0.9SBT–0.1BMH ceramic is obtained by Weibull distribution with satisfied reliability. In addition, 0.9SBT–0.1BMH shows outstanding thermal stability of energy storage performance up to 200°C, with the variation being less than 5%, together with satisfying cycling stability and high charge-discharge rate, making the 0.9SBT–0.1BMH ceramic a potential lead-free candidate for high power energy storage applications at elevated temperature.  相似文献   
54.
铋掺杂铌镁酸铅陶瓷的制备及其有序现象研究   总被引:1,自引:0,他引:1  
采用二步固相合成法制备钙钛矿相的掺铋铌镁酸铅陶瓷,利用XRD和TEM选区电子衍射技术对B位离子非计量有序排列结构进行了表征.研究表明,当为施主掺杂而提高Mg2+、Nb5+离子比例时,铌酸镁前驱体中逐渐出现六方MgNb相.施主Bi3+离子能够有效促进有序微区长大,提高系统有序度.利用X射线衍射线宽法对XRD慢扫描谱进行处理,求得当掺入5%Bi3+离子时,有序微区平均尺寸由纯PMN的5nm提高到22nm.  相似文献   
55.
A coating approach for synthesizing 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (0.9PMN–0.1PT) and PMN using a single calcination step was demonstrated. The pyrochlore phase was prevented by coating Mg(OH)2 on Nb2O5 particles. Coating of Mg(OH)2 on Nb2O5 was done by precipitating Mg(OH)2 in an aqueous Nb2O5 suspension at pH 10. The coating was confirmed using optical micrographs and zeta-potential measurements. A single calcination treatment of the Mg(OH)2-coated Nb2O5 particles mixed with appropriate amounts of PbO and PbTiO3 powders at 900°C for 2 h produced pyrochlore-free perovskite 0.9PMN–0.1PT and PMN powders. The elimination of the pyrochlore phase was attributed to the separation of PbO and Nb2O5 by the Mg(OH)2 coating. The Mg(OH)2 coating on the Nb2O5 improved the mixing of Mg(OH)2 and Nb2O5 and decreased the temperature for complete columbite conversion to ∼850°C. The pyrochlore-free perovskite 0.9PMN–0.1PT powders were sintered to 97% density at 1150°C. The sintered 0.9PMN–0.1PT ceramics exhibited a dielectric constant maximum of ∼24 660 at 45°C at a frequency of 1 kHz.  相似文献   
56.
The advent of new solid-state energy storage devices to tackle the electrical revolution requires the usage of nonlinear behavior leading to emergent phenomena. The ferroelectric analyzed herein belongs to a family of electrolytes that allow energy harvesting and storage as part of its self-charging features when thermally activated. The Na2.99Ba0.005ClO electrolyte shows quasi-adiabatic behavior with a continuous increase in polarization upon cycling, displaying almost no hysteresis. The maximum polarization obtained at a weak electric field is giant and similar to the remanent polarization. It depends on the temperature with a pyroelectric coefficient of 5.37 C m−2 °C−1 from −5 to 46 °C. The emergence occurs via negative resistance and capacitance. The glass transition is found to have its origins in the sharp depolarization at 46 – 48 °C. Above –10 °C, at ≈ –5 °C, another thermal anomaly may rely on the topologic characteristics of the A3–2xBaxClO (A = Li, Na, K) glass electrolytes enabling positive feedback of the current of electrons throughout the surface of the inner cell. The phenomena may pave the way toward a better understanding of dipolar nanodomain fragile glasses with exceptional ferroelectric characteristics to architect energy harvesting and storage devices based on multivalent thermally activated Na+-ion-ion electrolytes.  相似文献   
57.
A direct correlation between the materials property behavior with its associated ferroelectric domain mechanisms and the anisotropic component of the Landau free energy is established for binary PMN-PT (generation I) and ternary PIN-PMN-PT (generation II) relaxor ferroelectric single crystal material systems. In addition to their trade-off in material properties, the observed ferroelectric domain dynamic and the determined free energy anisotropies, especially as approaching phase transition, provide direct insights into the materials field-dependent behavior between the binary and ternary ferroelectric systems. Domain configuration features such as lamellar structures in binary PMN-PT and concentric oval-like structures in ternary PIN-PMN-PT result in different material responses to external stimuli. Compared to binary PMN-PT, the concentric oval-like domain structures of ternary PIN-PMN-PT result in a 20°C higher temperature range of field-dependent linear behavior, 40% increase in coercive electric field E C , ${E_C},$ higher elastic stiffness during ferroelectric domain switching, and lower electromechanical energy losses. Separation of the isotropic and anisotropic components in the Landau free energy reveals a higher anisotropic free energy contribution from the ternary system, especially at temperature for practical applications. The high anisotropic free energy found in the ternary PIN-PMN-PT system implies that the concentric oval-like domain structure contributes to reduced electromechanical energy losses and enhanced stability under external applied fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号