首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14410篇
  免费   1765篇
  国内免费   542篇
电工技术   987篇
技术理论   1篇
综合类   726篇
化学工业   1548篇
金属工艺   198篇
机械仪表   327篇
建筑科学   1370篇
矿业工程   42篇
能源动力   4437篇
轻工业   123篇
水利工程   73篇
石油天然气   88篇
武器工业   24篇
无线电   3539篇
一般工业技术   2637篇
冶金工业   121篇
原子能技术   167篇
自动化技术   309篇
  2024年   46篇
  2023年   419篇
  2022年   406篇
  2021年   560篇
  2020年   619篇
  2019年   609篇
  2018年   510篇
  2017年   766篇
  2016年   882篇
  2015年   803篇
  2014年   1132篇
  2013年   1122篇
  2012年   1146篇
  2011年   1548篇
  2010年   907篇
  2009年   842篇
  2008年   679篇
  2007年   685篇
  2006年   587篇
  2005年   421篇
  2004年   309篇
  2003年   267篇
  2002年   209篇
  2001年   187篇
  2000年   160篇
  1999年   113篇
  1998年   156篇
  1997年   94篇
  1996年   98篇
  1995年   52篇
  1994年   74篇
  1993年   63篇
  1992年   35篇
  1991年   14篇
  1990年   25篇
  1989年   14篇
  1988年   16篇
  1987年   19篇
  1986年   16篇
  1985年   13篇
  1984年   21篇
  1983年   11篇
  1982年   21篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1975年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
Due to the low cost and excellent potential for mass production, printable mesoscopic perovskite solar cells (p-MPSCs) have drawn a lot of attention among other device structures. However, the low open-circuit voltage (VOC) of such devices restricts their power conversion efficiency (PCE). This limitation is brought by the high defect density at perovskite grain boundaries in the mesoporous scaffold, which results in severe nonradiative recombination and is detrimental to the VOC. To improve the perovskite crystallization process, passivate the perovskite defects, and enhance the PCE, additive engineering is an effective way. Herein, a polymeric Lewis base polysuccinimide (PSI) is added to the perovskite precursor solution as an additive. It improves the perovskite crystallinity and its carbonyl groups strongly coordinate with Pb2+, which can effectively passivate defects. Additionally, compared with its monomer, succinimide (SI), PSI serves as a better defect passivator because the long-chained macromolecule can be firmly anchored on those defect sites and form a stronger interaction with perovskite grains. As a result, the champion device has a PCE of 18.84%, and the VOC rises from 973 to 1030 mV. This study offers a new strategy for fabricating efficient p-MPSCs.  相似文献   
102.
Despite the rapid developments are achieved for perovskite solar cells (PSCs), the existence of various defects in the devices still limits the further enhancement of the power conversion efficiency (PCE) and the long-term stability of devices. Herein, the efficient organic potassium salt (OPS) of para-halogenated phenyl trifluoroborates is presented as the precursor additives to improve the performance of PSCs. Studies have shown that the 4-chlorophenyltrifluoroborate potassium salt (4-ClPTFBK) exhibits the most effective interaction with the perovskite lattice. Strong coordination between  BF3/halogen in anion and uncoordinated Pb2+/halide vacancies, along with the hydrogen bond between F in  BF3 and H in FA+ are observed. Thus, due to the synergistic contribution of the potassium and anionic groups, the high-quality perovskite film with large grain size and low defect density is achieved. As a result, the optimal devices show an enhanced efficiency of 24.50%, much higher than that of the control device (22.63%). Furthermore, the unencapsulated devices present remarkable thermal and long-term stability, maintaining 86% of the initial PCE after thermal test at 80 °C for 1000 h and 95% after storage in the air for 2460 h.  相似文献   
103.
With the development of organic solar cells (OSCs), the high-performance and stable batch variance are becoming a new challenge for designing polymer donors. To obtain high photovoltaic performance, adopting polymers with high molecular weight as donors is an ordinary strategy. However, the high molecular weight need to subtly control the reaction time and state, inevitably caused batch-to-batch variations. Herein, a strategy of steric effect is applied to benzodifuran (BDF)-based polymer by introducing different positions of Cl atom, producing two polymers PBDFCl-1 and PBDFCl-2. The more twisted side chains conformation not only achieve the control of moderate molecular weight for PBDFCl-2, but also easily form molecular stacking through adopting BDF unit and maintain sufficient polymeric crystallinity. Due to the optimized stacking mode and good blend miscibility, PBDFCl-2-based device exhibitsa more elegant power conversion efficiency (PCE) of 17.00% compared to PBDFCl-1-based device. This is the highest efficiency record for BDF-based binary OSCs. Meanwhile, the PCE device variation of the different molecular weights for PBDFCl-2 is little, indicating the reduction of the batch variation. Therefore, smartly using steric effect of Cl atom in strong crystalline BDF unit can form efficient molecular stacking regulations and realize the coordination of high-performance and stable batch variance.  相似文献   
104.
Solar steam generation (SSG) through hydrogel-based evaporators has shown great promise for freshwater production. However, developing hydrogel-based evaporators with stable SSG performance in high-salinity brines remains challenging. Herein, phase-separated polyzwitterionic hydrogel-based evaporators are presented with sponge-like structures comprising interconnected pores for stable SSG performance, which are fabricated by photopolymerization of sulfobetaine methacrylate (SBMA) in water-dimethyl sulfoxide (DMSO) mixed solvents. It is shown that driven by competitive adsorption, the structures of the resulting poly(sulfobetaine methacrylate) (PSBMA) hydrogels can be readily tuned by the volume ratio of DMSO to achieve phase separation. The optimized phase-separated PSBMA hydrogels, combining the unique anti-polyelectrolyte effects of polyzwitterionic hydrogels, demonstrate a rapid water transport capability in brines. After introducing photothermal polypyrrole particles on the surface of the phase-separated PSBMA hydrogel evaporators, a stable water evaporation rate of ≈2.024 kg m−2 h−1 and high solar-to-vapor efficiency of ≈97.5% in a 3.5 wt.% brine are obtained under simulated solar light irradiation (1.0 kW m−2). Surprisingly, the evaporation rates remain stable even under high-intensity solar irradiation (2.0 kW m−2). It is anticipated that the polyzwitterionic hydrogel evaporators with sponge-like porous structures will contribute to developing SSG technology for high-salinity seawater applications.  相似文献   
105.
Semitransparent organic solar cells (ST-OSCs) have attracted increasing attention due to their promising prospect in building-integrated photovoltaics. Generally, efficient ST-OSCs with good average visible transmittance (AVT) can be realized by developing active layer materials with light absorption far from the visible light range. Herein, the development of ultrawide bandgap polymer donors with near-ultraviolet absorption, paired with near-infrared acceptors, is proposed to achieve high-performance ST-OSCs. The key points for the design of ultrawide bandgap polymers include constructing donor–donor type conjugated skeleton, suppressing the quinoidal resonance effect, and minimizing the twist of conjugated skeleton via noncovalent conformational locks. As a proof of concept, a polymer named PBOF with an optical bandgap of 2.20 eV is synthesized, which exhibited largely reduced overlap with the human eye photopic response spectrum and afforded a power conversion efficiency (PCE) of 16.40% in opaque device. As a result, ST-OSCs with a PCE over 10% and an AVT over 30% are achieved without optical modulation. Moreover, colorful ST-OSCs with visual aesthetics can be achieved by tuning the donor/acceptor weight ratio in active layer benefiting from the ultrawide bandgap nature of PBOF. This study demonstrates the great potential of ultrawide bandgap polymers for efficient colorful ST-OSCs.  相似文献   
106.
The elaborate balance between the open-circuit voltage (VOC) and the short-circuit current density (JSC) is critical to ensure efficient organic solar cells (OSCs). Herein, the chalcogen containing branched chain engineering is employed to address this dilemma. Three novel nonfullerene acceptors (NFAs), named BTP-2O , BTP-O-S , and BTP-2S , featuring different peripheral chalcogen containing branched chains are synthesized. Compared with symmetric BTP-2O and BTP-2S grafting two alkoxy or alkylthio branched chains, the asymmetric BTP-O-S grafting one alkoxy and one alkylthio branched chains shows mediate absorption range, applicable miscibility, and favorable crystallinity. Benefiting from the enhanced π–π stacking and charge transport, an optimal power conversion efficiency (PCE) of 17.3% is obtained for the PM6: BTP-O-S -based devices, with a good balance between VOC (0.912 V) and JSC (24.5 mA cm−2), and a high fill factor (FF) of 0.775, which is much higher than those of BTP-2O (16.1%) and BTP-2S -based (16.4%) devices. Such a result represents one of the highest efficiencies among the binary OSCs with VOC surpassing 0.9 V. Moreover, the BTP-O-S -based devices fabricated by using green solvent yield a satisfactory PCE of 17.1%. This work highlights the synergistic effect of alkoxy and alkylthio branched chains for high-performance OSCs by alleviating voltage loss and enhancing FF.  相似文献   
107.
2D Ti3C2Tx MXene, possessing facile preparation, high electrical conductivity, flexibility, and solution processability, shows good application potential for enhancing device performance of perovskite solar cells (PVSCs). In this study, tetrabutylammonium bromide functionalized Ti3C2Tx (TBAB-Ti3C2Tx) is developed as cathode buffer layer (CBL) to regulate the PCBM/Ag cathode interfacial property for the first time. By virtue of the charge transfer from TBAB to Ti3C2Tx demonstrated by electron paramagnetic resonance and density functional theory, the TBAB-Ti3C2Tx CBL with high electrical conductivity exhibits significantly reduced work function of 3.9 eV, which enables optimization of energy level alignment and enhancement of charge extraction. Moreover, the TBAB-Ti3C2Tx CBL can effectively inhibit the migration of iodine ions from perovskite layer to Ag cathode, which synergistically suppresses defect states and reduce charge recombination. Consequently, utilizing MAPbI3 perovskite without post-treatment, the TBAB-Ti3C2Tx based device exhibits a dramatically improved power conversion efficiency of 21.65% with significantly improved operational stability, which is one of the best efficiencies reported for the devices based on MAPbI3/PCBM with different CBLs. These results indicate that TBAB-Ti3C2Tx shall be a promising CBL for high-performance inverted PVSCs and inspire the further applications of quaternary ammonium functionalized MXenes in PVSCs.  相似文献   
108.
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been one of the most established hole transport layers (HTL) in organic solar cells (OSCs) for several decades. However, the presence of PSS ions is known to deteriorate device performance via a number of mechanisms including diffusion to the HTL-active layer interface and unwanted local chemical reactions. In this study, it is shown that PSS ions can also result in local p-doping in the high efficiency donor:non-fullerene acceptor blends – resulting in photocurrent loss. To address these issues, a facile and effective approach is reported to improve the OSC performance through a two-component hole transport layer (HTL) consisting of a self-assembled monolayer of 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic acid) and PEDOT:PSS. The power conversion efficiency (PCE) of 17.1% using devices with PEDOT:PSS HTL improved to 17.7% when the PEDOT:PSS/2PACz two-component HTL is used. The improved performance is attributed to the overlaid 2PACz layer preventing the formation of an intermixed p-doped PSS ion rich region (≈5–10 nm) at the bulk heterojunction-HTL contact interface, resulting in decreased recombination losses and improved stability. Moreover, the 2PACz monolayer is also found to reduce electrical shunts that ultimately yield improved performance in large area devices with PCE enhanced from 12.3% to 13.3% in 1 cm2 cells.  相似文献   
109.
The interface energetics-modification plays an important role in improving the power conversion efficiency (PCE) among the perovskite solar cells (PSCs). Considering the low carrier mobility caused by defects in PSCs, a double-layer modification engineering strategy is adopted to introduce the “spiderman” NOBF4 (nitrosonium tetrafluoroborate) between tin dioxide (SnO2 and perovskite layers. NO+, as the interfacial bonding layer, can passivate the oxygen vacancy in SnO2, while BF4 can optimize the defects in the bulk of perovskite. This conclusion is confirmed by theoretical calculation and transmission electron microscopy (TEM). The synergistic effect of NO+ and BF4 distinctly heightens the carrier extraction efficiency, and the PCE of PSCs is 24.04% with a fill factor (FF) of 82.98% and long-term stability. This study underlines the effectiveness of multifunctional additives in improving interface contact and enhancing PCE of PSCs.  相似文献   
110.
Organic solar cells (OSCs) process fascinating solution-printing capability to achieve low-cost and large-scale manufacture. However, the rapid power conversion efficiency (PCE) decay with active layer thickness enlargement inhibits the implement of OSCs’ potential advantages. To overcome the bottlenecks of PCE decay in thick active layer OSCs, the electrical doping with componential selectivity in bulk heterojunction (BHJ) film is achieved by introducing a solid solvation additive. Benefiting from the higher exciton splitting efficiency together with the longer drift (Ldr) and diffusion (Ldiff) lengths, an OSC with 100 nm BHJ film demonstrates a PCE increment from 16.44% to 18.24% with prolonged dark and illuminated storage stabilities. Applying the solid solvation assisted (SSA) doping method in the OSCs with 500 nm active layer, the PCE significantly increases by 31.9%, from the original value of 11.79% to 15.55%. It further improves to 15.84% in a ternary blend thick-film device, which is the record value to the best of our knowledge. Besides, the SSA doping narrows the PCE gap between the 0.04 and 1 cm2 devices. All improvements demonstrate the great potential of SSA doping for OSC commercial manufacture, since it optimizes the photovoltaic performance under all practical conditions of long-term, thick-film, and large-area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号