首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   24篇
  国内免费   43篇
电工技术   7篇
综合类   9篇
化学工业   45篇
金属工艺   11篇
机械仪表   2篇
矿业工程   4篇
能源动力   37篇
石油天然气   1篇
无线电   169篇
一般工业技术   135篇
冶金工业   13篇
原子能技术   2篇
自动化技术   3篇
  2024年   2篇
  2023年   9篇
  2022年   6篇
  2021年   11篇
  2020年   11篇
  2019年   13篇
  2018年   8篇
  2017年   15篇
  2016年   13篇
  2015年   9篇
  2014年   12篇
  2013年   14篇
  2012年   27篇
  2011年   31篇
  2010年   21篇
  2009年   34篇
  2008年   16篇
  2007年   25篇
  2006年   20篇
  2005年   14篇
  2004年   10篇
  2003年   11篇
  2002年   6篇
  2001年   8篇
  2000年   11篇
  1999年   10篇
  1998年   7篇
  1997年   7篇
  1996年   10篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有438条查询结果,搜索用时 109 毫秒
51.
The high-pressure electro-dynamic gradient (HP-EDG) crystal-growth technology has been recently developed and introduced at eV PRODUCTS to grow large-volume, semi-insulating (SI) CdZnTe single crystals for room-temperature x-ray and gamma-ray detector applications. The new HP growth technology significantly improves the downstream CdZnTe device-fabrication yield compared to earlier versions of the HP crystal-growth technology because of the improved structural and charge-transport properties of the CdZnTe ingots. The new state-of-the-art, HP-EDG crystal-growth systems offer exceptional flexibility and thermal and mechanical stability and allow the growth of high-purity CdZnTe ingots. The flexibility of the multi-zone heater system allows the dynamic control of heat flow to optimize the growth-interface shape during crystallization. This flexibility combined with an advanced control system, improved system diagnostics, and realistic heat-transport modeling provides an excellent platform for continuing process development. Initial results on large-diameter (140 mm), SI Cd1−xZnxTe (x=0.1) ingots grown in low temperature gradients with the HP-EDG technique show reduced defect density and complete elimination of ingot cracking. The increased single-crystal yield combined with the improved charge transport allows the fabrication of large-volume, high-sensitivity, high energy-resolution detector devices at increased yield. The CdZnTe ingots grown to date produced large-volume crystals (≥1cm3) with electron mobility-lifetime product (μτe) in the (3–7) × 10−3 cm2/V range. The lower-than-desired charge-transport uniformity of the HP-EDG CdZnTe ingots is associated with the high density of Te inclusions formed in the ingots during crystallization. The latest process-development efforts show a reduction in the Te-inclusion density, an increase of the charge-transport uniformity, and improved energy resolution of the large-volume detectors fabricated from these crystals.  相似文献   
52.
HgCdTe晶体双晶衍射测量讨论   总被引:1,自引:0,他引:1  
蔡毅 《红外与激光工程》1997,26(2):18-26,44
体晶和外延生长技术的进步明显改善了HggCdTe晶体的结构完整性,更多地提出了可定量评价其结晶品质的双晶衍射测量的需求。  相似文献   
53.
Chemical modification of bothn andp type CdTe has been found to improve the performance and stability of PEC solar cells. The surfaces, modified by Ru3+, have been examined by a variety of techniques. Modification results in enhanced barrier height at the surface due to the formation of a passivating oxide layer.  相似文献   
54.
Using photoluminescence measurements as function of temperature and impurity concentration it is shown that P and Li impurities initiate similar luminescence transitions in ZnTe. These transitions are of free-to-bound type involving shallow acceptors and donors. The external quantum efficiency is high enough to designate ZnTe (heavily doped with P or Li) as a good candidate for light emitting diodes in the green.  相似文献   
55.
A fine measurement system for measuring thermal conductivity was constructed. An accuracy of 1% was determined for the reference quartz with a value of 1.411 W/m K. Bi0.5Sb1.5Te3 samples were prepared by mechanical alloying followed by hot-pressing. Grain sizes were varied in the range from 1 μm to 10 μm by controlling the sintering temperature in the temperature range from 623 K to 773 K. The thermal conductivity was 0.89 W/m K for the sample sintered at 623 K, while a grain size of 1.75 μm was measured by optical microscopy and scanning electron microscopy. The thermal conductivity increased on the sample sintered at 673 K because of grain growth and decreased on those sintered at the temperatures from 673 K to 773 K because the increase of pore size caused to decrease thermal conductivity. The increase of thermal conductivity for the samples sintered at temperatures above 773 K was affected by the increase of carrier concentration.  相似文献   
56.
GeTe, a small bandgap semiconductor that has native p-type defects due to Ge vacancies, is an important constituent in the thermoelectric material known as TAGS. TAGS is an acronym for alloys of GeTe with AgSbTe2, and compositions are normally designated as TAGS-x, where x is the fraction of GeTe. TAGS-85 is the most important with regard to applications, and there is also commercial interest in TAGS-80. The crystal structure of GeTe1+δ has a composition-dependent phase transformation at a temperature ranging from 430°C (δ = 0) to ~400°C (δ = 0.02). The high-temperature form is cubic. The low-temperature form is rhombohedral for δ < 0.01, as is the case for good thermoelectric performance. Addition of AgSbTe2 shifts the phase transformation to lower temperatures, and one of the goals of this work is a systematic study of the dependence of transformation temperature on the parameter x. We present results on phase transformations and associated instabilities in TAGS compositions in the range of 70 at.% to 85 at.% GeTe.  相似文献   
57.
Cd-enriched cadmium telluride (CdTe) polycrystalline films were grown on corning glass substrates by close spaced sublimation (CSS) technique. To our knowledge, Cd-enriched CdTe thin films by CSS have not been reported earlier. The structural investigations performed by means of X-ray diffraction (XRD) technique, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX) showed that the deposited films exhibit a polycrystalline structure with 〈111〉 as preferred orientation. The structural, optical, and electrical properties of these films were analyzed as a function of the Cd concentration. For the films having an excess of Cd, the electrical resistivity dropped several orders of magnitude. The deposited films also showed that the value of resistivity decreased with increasing temperature manifesting the semiconducting behavior of the films. The results showed that using this deposition technique, n-type Cd-enriched CdTe polycrystalline film could be produced.  相似文献   
58.
Acceptor doping of many II–VI compound semiconductors has proved problematic and doping of epitaxial mercury cadmium telluride (MCT, Hg1−x Cd x Te) with arsenic is no exception. High-temperature (>400°C) anneals followed by a lower temperature mercury-rich vacancy-filling anneal are frequently required to activate the dopant. The model frequently used to explain p-type doping with arsenic invokes an amphoteric nature of group V atoms in the II–VI lattice. This requires that group VI substitution with arsenic only occurs under mercury-rich conditions either during growth or the subsequent annealing and involves site switching of the As. However, there are inconsistencies in the amphoteric model and unexplained experimental observations, including arsenic which is 100% active as grown by metalorganic vapor-phase epitaxy (MOVPE). A new model, based on hydrogen passivation of the arsenic, is therefore proposed.  相似文献   
59.
Junction Stability in Ion-Implanted Mercury Cadmium Telluride   总被引:1,自引:0,他引:1  
Ion implantation into HgCdTe results in the production of Hg interstitials, which can be subsequently driven into the HgCdTe by an annealing process. This diffusive drive-in of the Hg interstitials fills vacancies and kicks out group I impurities and results in the formation of an np junction. In this work we report on the production of interstitials during baking subsequent to the ion implantation process. Various concentrations of metal vacancies were first introduced into mid-wavelength infrared (MWIR, 3 μm to 5 μm) HgCdTe by annealing under tellurium-saturated conditions at various temperatures. Baking subsequent to planar implantation of boron produced np junctions whose depths were measured by defect etching. The results were modeled using a simple diffusion limited model from a fixed surface concentration. The surface concentration was allowed to decrease exponentially to zero after a time, found to be of the order of ∼80 h to 150 h. Exhaustion of the interstitials sources produced by the implantation was nearly complete after ∼400 h. The total number of mercury interstitials produced was approximately 50% of the implant dosage.  相似文献   
60.
Efficient N2 fixation at ambient condition through electrochemical processes has been regarded as a promising alternative to traditional Haber–Bosch technology. Engineering surface atomic architecture of the catalysts to generate desirable active sites is important to facilitate electrochemical nitrogen reduction reaction (NRR) while suppressing the competitive hydrogen evolution reaction. Herein, nickel telluride nanocrystals with selectively exposed {001} and {010} facets are synthesized by a simple process, realizing the manipulation of surface chemistry at the atomic level. It is found that the catalysts expose the {001} facets coupled with desirable Ni sites, which possess high Faraday efficiency of 17.38 ± 0.36% and NH3 yield rate of 33.34 ± 0.70 μg h?1 mg?1 at ‐0.1 V vs RHE, outperforming other samples enclosed by {010} facets (8.56 ± 0.22%, 12.78 ± 0.43 μg h?1 mg?1). Both experimental results and computational simulations reveal that {001} facets, with selectively exposed Ni sites, guarantee the adsorption and activation of N2 and weaken the binding for *H species. Moreover, the enhanced reduction capacity and accelerated charge transfer kinetics also contribute the superior NRR performance of {001} facets. This work presents a novel strategy in designing nonprecious NRR electrocatalyst with exposed favorable active sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号